991 resultados para 114-699A
Resumo:
Ocean Drilling Program (ODP) Leg 114 recovered nannofossil-bearing sediments from seven sites in the high latitudes of the South Atlantic Ocean. Cretaceous sections were recovered from Sites 698 and 700, located on the Northeast Georgia Rise and its lower flanks, respectively. These contain distinctive high-latitude nannofossil floras similar to those from high-latitude areas of the Northern Hemisphere. Most of the biostratigraphic datums used to date the upper Campanian to Maestrichtian interval appear to lie at approximately the same level in both hemispheres. The FAD of Nephrolithus frequens is confirmed to be diachronous with an earlier occurrence in high latitudes. The LAD of Monomarginatus primus n. sp. also appears to be diachronous with a later LAD in the high latitudes of the Southern Hemisphere. Fossiliferous Paleocene to lowermost Miocene sediments were recovered at all seven sites, from the Northeast Georgia Rise in the west to the Meteor Rise in the east. These nannofossil floras, although restricted in diversity and only poorly preserved, are sufficiently distinctive to allow the recognition of 19 zones and three subzones, which are used to date and correlate the cores recovered. Only Site 704 on the Meteor Rise yielded a substantial section of Miocene to Quaternary nannofossil-rich sediments. The nannofossil floras of this section are of very low diversity, with usually fewer than eight species present. Some stratigraphic ranges of important biostratigraphic datum species are observed to be different in the high-latitude sections from those recorded from low-latitude areas. The LAD of Reticulofenestra bisecta, when calibrated by magnetostratigraphy, appears to occur earlier in Hole 699A (within Chron C6CR) than in Hole 703A and possibly Hole 704B and in other published accounts of lower latitude sites in the South Atlantic. The FAD of Nannotetrina fulgens/N. cristata appears to occur later in Hole 702B (Chron C20R) than it does in other published accounts of lower latitude sites in the South Atlantic. Diachroneity is also suspected in the stratigraphic ranges of Chiasmolithus solitus and Chiasmolithus oamaruensis, although poor magnetostratigraphic results through the critical interval prevent confirmation of this. Differences in the relative stratigraphic ranges of lsthmolithus recurvus and Cribrocentrum coenurumlC. reticulatum at Sites 699 and 703 are noted. These possibly suggest warmer surface waters on the eastern side (Site 703) of the middle to late Eocene South Atlantic than those on the western side (Site 699). The diversities of the nannofossil floras and the presence of the warm-water genera Discoaster, Sphenolithus, Helicosphaera, and Amaurolithus reflect the changing surface water temperatures throughout the Cenozoic. Warmer periods are inferred for the late Paleocene to early middle Eocene, late middle Eocene to late Eocene, latest Oligocene to earliest Miocene, and possibly the Pliocene. Colder periods are inferred for the middle Eocene, most of the Oligocene, and the Miocene. Dramatic changes in the nannofossil floras of the Pleistocene of Site 704 are thought to reflect a rapidly changing environment. Monomarginatus primus, a new species from the Upper Cretaceous strata of Hole 700B, is described.
Resumo:
The stratigraphic ranges and relative abundances of selected diatoms and silicoflagellates are presented from three Neogene sedimentary sequences from the subantarctic South Atlantic. These data were compiled from Hole 699A in the southwest South Atlantic and Holes 704A and 704B in the southeast South Atlantic. Thirty-five samples were examined from a 67.5-m section of Hole 699A, which is mostly late Miocene or younger in age. A total of 225 samples was examined from the upper 569.1-m lower Miocene to Quaternary section in Holes 704A and 704B. Although the partial census of the Site 704 sequences is only preliminary, it reveals that the Neogene is remarkably complete and serves as a reference for further detailed examination of an important biostratigraphic-magnetostratigraphic reference section for the Neogene record of the Southern Ocean.
Resumo:
Calcareous nannofossil assemblages were studied from Sites 699 and 703, drilled during ODP Leg 114 to the west and east, respectively, of the Mid-Atlantic Ridge in the subantarctic South Atlantic Ocean. Recovery at the two sites consists of an almost continuous sequence of upper Eocene-lower Oligocene sediments. This study describes the calcareous nannofossil assemblages at the transition between the Eocene and Oligocene and correlates these assemblages with those described in lower latitude sections. Quantitative analyses were performed on several important taxa in order to improve the biostratigraphic resolution and permit some paleoenvironmental interpretations. Several discrepancies were noted between the two sites and between the Eocene and Oligocene assemblages. The Eocene assemblages show a great number of species and warmer water conditions; the early Oligocene assemblages are less diversified and are indicative of cooler conditions. The Eocene/Oligocene boundary was not defined by planktonic foraminifers because of the strong dissolution, poor recovery, and drilling disturbances. On the other hand, the calcareous nannofossil assemblage allowed recognition of the interval where the Eocene/Oligocene boundary can possibly be placed.
Resumo:
A number of neogenic opaline structures, not previously reported in the literature, as well as other neogenic phases are described from four Oligocene to Pliocene biosiliceous sediment samples from Hole 699A. The possible influence of microbes on the formation or the morphology of some of them is discussed. The samples, which are early Pliocene, early to middle Miocene, and late Oligocene (two) in age, were histologically fixed aboard ship upon retrieval. Investigations of the samples used SEM (with Edax/Tracor) and XRD methods. Diagenesis has affected all four samples, but the most extensive development of neoformed structures occurs in the Miocene and uppermost Oligocene samples, where microbial filaments (0.05 to 10 ?m long), microbial colonies, and siliceous microhemispheroids (0.2 to 0.7 µm diameter) were observed. The latter encrust filaments, diatoms, and detrital grains to varying degrees. Other neoformed structures include (1) flakes formed by coalesced microhemispheroids, some of which are guided by short, stubby filaments, which occur only in the Miocene and uppermost Oligocene samples, and (2) flakes characterized by smooth or microfissured surfaces, which grow on diatom frustules and in pore spaces and have a more widespread distribution. The XRD data indicate possible cristobalite formation in the Miocene and uppermost Oligocene samples; we believe that the neoformed opaline structures (encrusted filaments and microhemispheroids) may represent an early phase of opal-CT. The timing of neoformation of most of these features appears to have been fairly recent, continuing even at the time of sampling. There appears to be no direct correlation of this incipient, lower Miocene-uppermost Oligocene diagenetic layer and the pore-water chemistry profiles; a massive increase in shear strength in these sediments, however, may indicate some cementation. Smectite was identified by XRD as the most prominent clay mineral in these generally clay-poor sediments. Honeycombed minerals with filamentous edges, which could correspond to smectite, were observed with SEM in the pore spaces.