993 resultados para Black Sea
Resumo:
This report contains inorganic nutrient chemistry, sulfide and oxygen data collected during cruises 2 through 5 of the 1988 Black Sea Oceanographic Expedition aboard the R/V Knorr. Continuous nutrient and sulfide data were obtained in the upper 375 m using a pumped profiling system. Discrete samples were collected from rosette-CTD casts. The corresponding physical oceanographic data have been presented by White et al. (1989). Although all of the data reported has been edited at least twice, errors may remain. We encourage queries and plan to distribute updates on electronic media if there are any non-trivial changes.
Resumo:
Summer flounder, Paralichthys dentatus, scup, Stenotomus chrysops, and black sea bass, Centropristis striata, cooccur within the Middle Atlantic Bight and off southern New England and are important components of commercial and recreational fisheries. The commercial otter trawl fishery for these species is primarily a winter fishery, whereas the recreational fishery takes place between late spring and autumn. The otter trawl fishery generally targets summer flounder, and less frequently scup, while black sea bass occurs as bycatch. Trips in which all three species were present yielded highest aggregate landings per unit of effort (LPUE) levels and occurred more often than trips landing only one or two species. More than 50% of the trips in the trawl fishery landed at least two of the three species. In contrast, greater than 75% of the recreational landings of each species occurred as a result of trips landing only one species. Differences in the fisheries resulted from the interactions of seasonal changes in species distributions and gear selectivity. (PDF file contains 18 pages.)
Resumo:
A computer program was developed for the identification of the teleost fish eggs that may be found in the pelagic zone of the Black Sea. The program identifies eggs of 70 species, using up to 28 descriptive characters, and may be adapted for use outside of the Black Sea.
Resumo:
This study was undertaken to re-assess the level of scup (Stenotomus chrysops) discards by weight and to evaluate the effect of various codend mesh sizes on the level of scup discards in the winter-trawl scup fishery. Scup discards were high in directed scup tows regardless of codend mesh — typically one to five times the weight of landings. The weight of scup discards in the present study did not differ significantly from that recorded in scup-targeted tows in the NMFS observer database. Most discards were required as such by the 22.86 cm TL (total length) fish-size limit for catches. Mesh sizes ≤12.7 cm, including the current legal mesh size (11.43 cm) did not adequately filter out scup smaller than 22.86 cm. The median length of scup discards was about 19.83 cm TL. Lowering the legal size for scup from 22.86 to 19.83 cm TL would greatly reduce discard mortality. Scup discards were a small fraction (0.4%) of black sea bass (Centropristis striata) landings in blacksea-bass−targeted tows. The black sea bass fishery is currently regulated under the small-mesh fishery gearrestricted area plan in which fishing is prohibited in some areas to reduce scup mortality. Our study found no evidence to support the efficacy of this management approach. The expectations that discarding would increase disproportionately as the trip limit (limit [in kilograms] on catch for a species) was reached towards the end of the trip and that discards would increase when the trip limit was reduced from 4536 kg to 454 kg at the end of the directed fishing season were not supported. Trip limits did not significantly affect discard mortality.
Resumo:
Black Sea Bass (Centropristis striata) in the mid-Atlantic Bight undertake seasonal cross-shelf movements to occupy inshore rocky reefs and hardbottom habitats between spring and fall. Shelf-wide migrations of this stock are well documented, but movements and home ranges of fish during their inshore residency period have not been described. We tagged 122 Black Sea Bass with acoustic transmitters at a mid-Atlantic reef to estimate home-range size and factors that influence movements (>400 m) at a 46.1-km2 study site between May and November 2003. Activity of Black Sea Bass was greatest and most consistent during summer but declined rapidly in September as water temperatures at the bottom of the seafloor increased on the inner shelf. Black Sea Bass maintained relatively large home ranges that were fish-size invariant but highly variable (13.7–736.4 ha), underscoring the importance of large sample sizes in examination of population-level characteristics of mobile species with complex social interactions. On the basis of observed variations in movement patterns and the size of home ranges, we postulate the existence of groups of conspecifics that exhibit similar space-use behaviors. The group of males released earlier in the tagging period used larger home ranges than the group of males released later in our study. In addition, mean activity levels and the probability of movement among acoustic stations varied among groups of fish in a complex manner that depended on sex. These differences in movement behaviors may increase the vulnerability of male fish to passive fishing gears, further exacerbating variation in exploitation rates for this species among reefs.
Resumo:
During recent decades anthropogenic activities have dramatically impacted the Black Sea ecosystem. High levels of riverine nutrient input during the 1970s and 1980s caused eutrophic conditions including intense algal blooms resulting in hypoxia and the subsequent collapse of benthic habitats on the northwestern shelf. Intense fishing pressure also depleted stocks of many apex predators, contributing to an increase in planktivorous fish that are now the focus of fishing efforts. Additionally, the Black Sea's ecosystem changed even further with the introduction of exotic species. Economic collapse of the surrounding socialist republics in the early 1990s resulted in decreased nutrient loading which has allowed the Black Sea ecosystem to start to recover, but under rapidly changing economic and political conditions, future recovery is uncertain. In this study we use a multidisciplinary approach to integrate information from socio-economic and ecological systems to model the effects of future development scenarios on the marine environment of the northwestern Black Sea shelf. The Driver–Pressure–State-Impact-Response framework was used to construct conceptual models, explicitly mapping impacts of socio-economic Drivers on the marine ecosystem. Bayesian belief networks (BBNs), a stochastic modelling technique, were used to quantify these causal relationships, operationalise models and assess the effects of alternative development paths on the Black Sea ecosystem. BBNs use probabilistic dependencies as a common metric, allowing the integration of quantitative and qualitative information. Under the Baseline Scenario, recovery of the Black Sea appears tenuous as the exploitation of environmental resources (agriculture, fishing and shipping) increases with continued economic development of post-Soviet countries. This results in the loss of wetlands through drainage and reclamation. Water transparency decreases as phytoplankton bloom and this deterioration in water quality leads to the degradation of coastal plant communities (Cystoseira, seagrass) and also Phyllophora habitat on the shelf. Decomposition of benthic plants results in hypoxia killing flora and fauna associated with these habitats. Ecological pressure from these factors along with constant levels of fishing activity results in target stocks remaining depleted. Of the four Alternative Scenarios, two show improvements on the Baseline ecosystem condition, with improved waste water treatment and reduced fishing pressure, while the other two show a worsening, due to increased natural resource exploitation leading to rapid reversal of any recent ecosystem recovery. From this we conclude that variations in economic policy have significant consequences for the health of the Black Sea, and ecosystem recovery is directly linked to social–economic choices.
Resumo:
The Black Sea ecosystem experienced severe eutrophication-related degradation during the 1970s and 1980s. However, in recent years the Black Sea has shown some signs of recovery which are often attributed to a reduction in nutrient loading. Here, SeaWiFS chlorophyll a (chl a), a proxy for phytoplankton biomass, is used to investigate spatio-temporal patterns in Black Sea phytoplankton dynamics and to explore the potential role of climate in the Black Sea's recovery. Maps of chl a anomalies, calculated relative to the 8 year mean, emphasize spatial and temporal variability of phytoplankton biomass in the Black Sea, particularly between the riverine-influenced Northwest Shelf and the open Black Sea. Evolution of phytoplankton biomass has shown significant spatial variability of persistence of optimal bloom conditions between three major regions of the Black Sea. With the exception of 2001, chl a has generally decreased during our 8 year time-series. However, the winter of 2000–2001 was anomalously warm with low wind stress, resulting in reduced vertical mixing of the water column and retention of nutrients in the photic zone. These conditions were associated with anomalously high levels of chl a throughout much of the open Black Sea during the following spring and summer. The unusual climatic conditions occurring in 2001 may have triggered a shift in the Black Sea's chl a regime. The long-term significance of this recent shift is still uncertain but illustrates a non-linear response to climate forcing that makes future ecosystem changes in the pelagic Black Sea ecosystem difficult to predict.