3 resultados para small scale wood construction industry
em Instituto Politécnico de Bragança
Resumo:
Wood is a natural and traditional building material, as popular today as ever, and presents advantages. Physically, wood is strong and stiff, but compared with other materials like steel is light and flexible. Wood material can absorb sound very effectively and it is a relatively good heat insulator. But dry wood burns quite easily and produces a great deal of heat energy. The main disadvantage is the high level of combustion when exposed to fire, where the point at which it catches fire is from 200–400°C. After fire exposure, is need to determine if the charred wooden structures are safe for future use. Design methods require the use of computer modelling to predict the fire exposure and the capacity of structures to resist those action. Also, large or small scale experimental tests are necessary to calibrate and verify the numerical models. The thermal model is essential for wood structures exposed to fire, because predicts the charring rate as a function of fire exposure. The charring rate calculation of most structural wood elements allows simple calculations, but is more complicated for situations where the fire exposure is non-standard and in wood elements protected with other materials. In this work, the authors present different case studies using numerical models, that will help professionals analysing woods elements and the type of information needed to decide whether the charred structures are adequate or not to use. Different thermal models representing wooden cellular slabs, used in building construction for ceiling or flooring compartments, will be analysed and submitted to different fire scenarios (with the standard fire curve exposure). The same numerical models, considering insulation material inside the wooden cellular slabs, will be tested to compare and determine the fire time resistance and the charring rate calculation.
Resumo:
Wood is a natural and traditional building material, as popular today as ever, and presents advantages. Physically, wood is strong and stiff, but compared with other materiais like steel is light and flexible. Wood material can absorb sound very effectively and it is a relatively good heat insulator. But dry wood does bum quite easily md produces a great deal ofheat energy. The main disadvantage is the high levei ofcombustion when exposed to fíre, where the point at which it catches fire is fi-om 200-400°C. After fu-e exposure, is need to determine if the charred wooden stmctures are safe for future use. Design methods require the use ofcomputer modelling to predict the fíre exposure and the capacity ofstructures to resist fhose action. Also, large or small scale experimental tests are necessary to calibrate and verify the numerical models. The thermal model is essential for wood stmctures exposed to fire, because predicts the charring rate as a fünction offire exposure. The charring rate calculation ofmost stmctural wood elements allows simple calculations, but is more complicated for situations where the fire exposure is non-standard and in wood elements protected with other materiais.
Resumo:
O presente trabalho, no âmbito de projeto final de curso de metrado em Engenharia da Construção, teve como objetivo o estudo do comportamento de estruturas de suporte de terras flexíveis multi-apoiadas (com diferentes tipos de apoio) para dois tipos solos homogéneos. Recorreu-se às teorias clássicas, como a de Rankine, desenvolvidas para estruturas de suporte de terras rígidas. Às teorias semi-empíricas de Terzaghi & Peck que culminaram nos diagramas de Terzaghi & Peck. Apesar de os digramas de Terzaghi & Peck serem diagramas de pressões de terras a usar em estruturas de suporte de terras flexíveis, apresentam algumas limitações importantes, como a sua aplicação apenas em solos heterogéneos, com presença ou não de níveis freáticos, e sem fornecer distribuição das pressões de terras na zona passiva (zona enterrada). Como na atualidade os modelos de elementos finitos permitem simular de modo muito mais rigoroso os problemas da engenharia. O presente trabalho esteve focado em analisar um caso prático em diferentes solos e com diferentes tipos de apoios. Será estudado mediante os métodos analíticos usando as teorias clássicas e posteriormente métodos numéricos (com diferentes programas de cálculo). Finalmente serão comparados os resultados obtidos mediante os diferentes métodos usados. As estruturas foram inicialmente pré-dimensionadas usando os métodos clássicos. Assim foram usados os diagramas de pressões de terras de Terzaghi & Peck para a zona ativa (zona em escavação) e a teoria de Rankine para conhecer as pressões de terras na zona enterrada da cortina (parede moldada) e recorrendo ao software Ftool para a obtenção dos parâmetros de dimensionamento de estruturas de suporte de terras objeto de estudo. Posteriormente utilizaram-se os programas de cálculo automático CYPE 2015 k, e o programa de cálculo de elementos finitos PLAXIS Introductory 2010. Estes programas permitem simular o faseamento construtivo do muro. Para estudar a influência de algúns parâmetros no comportamento da Resumo IV cortina o estudo foi realizado com dois solos distintos, um solo argiloso mole e um solo arenoso denso. Assim como para dois tipos de apoios distintos, ancoragens ativas e escoras passivas. Foram analisados diferentes parâmetros na estrutura de suporte; pressões horizontais das terras, deslocamentos horizontais, esforço axial, transverso e momento fletor.