3 resultados para recombinant proteins, plants, biofarming, plant-based production, transgenic plants

em Instituto Politécnico de Bragança


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herbal therapy is characterized by the use of aromatic and medicinal plants (AMP) in different pharmaceutical forms for therapeutic purposes. The present study aims to characterize the use of AMP, drugs and herbal products in Bragança city. For this, a cross-sectional study was conducted through application of a questionnaire to 404 subjects of both gender and aged between 18 and 89 years. AMP were therapeutically used by 53.7% mainly due “to be natural” (43.9%) while 33.8% use drugs and/ or herbal products mainly “because it is good for health” (53.5%). The AMP most used were Cidreira (n=149) and Camomila (n=117) and concerning drugs and/ or herbal products Valdispert® (n=48) and Daflon® 500 (n=41) were the most reported. Overall, the reported uses of AMP, drugs and herbal products were correct, according to the reported in literature. The use of AMP is motivated by self-knowledge (55.4%) while drugs and/ or herbal products are used mostly by medical prescription (44.1%). AMP were obtained by own cultivation (44.1%) and drug and/ or herbal products in pharmacies (89.0%). Of all users, about 90% not combined these products with conventional drugs and it was identified just one potential occurrence of drug interactions related with the use of Hipericão. The occurrence of adverse effects was noted after the use of AMP Sene (11.8%), Hipericão (9.1%) and Ginkgo Biloba (8.3%). The use of these products is a common practice among the residents of Bragança city, which use a wide diversity of AMP and plant-based products.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Plant tissue and organ culture has been extensively used from the beginning of the XX century for the study and comprehension of some primary biological mechanisms such as morphogenesis. However, with the increasing demand of the market for novel products derived from plants, in vitro culture became a reliable technique for the mass production of plant material. Moreover, the potential to use this technique for the production of some bioactive compounds, such as phenolic compounds, is immense since it allows the manipulation of the biosynthetic routes to increase the production and accumulation of specific compounds. This work intends to make a brief historical review of in vitro culture, highlighting its use for the production of bioactive compounds. Also, emphasizes the importance of phenolic compounds for the consumer as well reviews the metabolic pathways involved in its production in plant cells. Furthermore, it was carried out a comprehensive study on the work developed for the production of plant phenolic compounds in in vitro cultures, as well as on the type of elicitors used to increase of the same production; also a brief highlighting of the phenolic compounds which serve as elicitors. There are numerous reports directed to the production of phenolic extracts in in vitro plant cultures, however there is a lack in the production of individual phenolic compounds mainly due to the complexity of the biosynthetic routes and extraction procedures. Elicitation procedures are often used to increase the production of phenolics, archieving in most cases higher yields than in non-elicitated cultures. The increasing production of bioactive phenolic extracts/compounds allows for their further applicability, namely in the industry of functional foods or in pharmaceutical/medical fields.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

At the present there is a high pressure toward the improvement of all production processes. Those improvements can target distinct factors along the production chain. In particular, and due to recent tight energy efficiency policies, those that involve energy efficiency. As can be expected, agricultural processes are not immune to this tendency. Even more when dealing with indoor productions. In this context, this work presents an innovative system that aims to improve the energy efficiency of a trees growing platform. This improvement in energy consumption is accomplished by replacing an electric heating system by one based on thermodynamic panels. The assessment of the heating fluid caudal and its temperature was experimentally obtained by means of a custom made scaled prototype whose actuators status are commanded by a Fuzzy-based controller. The obtained results suggest that the change in the heating paradigm will lead to overall savings that can easily reach 60% on the energy bill.