2 resultados para potato

em Instituto Politécnico de Bragança


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wild mushrooms have been extensively studied for their value as sources of high quality nutrients and of powerful physiologically bioactive compounds [1,2]. The present study was designed to evaluate the in vitro development of two wild edible mushroom species: Pleurotus eryngii (DC.) Quél. and Suillus belinii (Inzenga) Watling, by testing different solid (Potato Dextrose Agar medium –PDA and Melin-Norkans medium- MMN) and liquid culture media (Potato dextrose broth- PDB and Melin-Norkans medium- MMN). Each strain of mushroom produces a special type of mycelium and this range of characteristics varies in form, color and growth rate. S. bellinii presents a pigmented and rhizomorphic mycelia, whereas, P. eryngii has depigmented and cottony mycelia. The mycelium isolated and grown in PDA showed a faster radial growth compared to the mycelium isolated and grown in both solid and liquid incomplete MMN medium. P. eryngii exhibited a rapid growth and a higher mycelia biomass in both medium compared to S. belinii. Moreover, the obtained mycelia will be characterized in terms of well-recognized bioactive compounds namely, phenolic acids and mycosterols (mainly ergosterol), by using high performance liquid chromatography coupled to diode array and ultraviolet detectors, respectively. These compounds will be correlated to mycelia bioactivity: i) antioxidant activity, evaluated through free radicals scavenging activity, reducing power and lipid peroxidation inhibition in vitro assays; ii) anti-inflammatory activity, assessed through nitric oxide production inhibition in murine macrophages (RAW 264.7 cell line); iii) cytotoxic activity, evaluated either in human tumor cell lines (MCF-7- breast adenocarcinoma, NCIH460- non-small cell lung cancer, HeLa- cervical carcinoma and HepG2- hepatocellular carcinoma) as also in a non-tumor porcine primary liver cells culture established in-house (PLP2). Overall, our expectation is that the bioactive formulations obtained by in vitro culture can be applied as nutraceuticals or incorporated in functional foods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the oomycete cause extensive losses in agriculture and widespread degradation in natural plant communities, being responsible for the death of thousands of trees every year. Two of the representative species are Phytophthora infestans, which causes late blight of potato, and Phytophthora cinnamomi, which causes chestnut ink disease, responsible for losses on sweet chestnut production in Europe. Genome sequencing efforts have been focused on the study of three species: P. infestans, P. sojae and P. ramorum. Phytophthora infestans has been developed as the model specie for the genus, possessing excellent genetic and genomics resources including genetic maps, BAC libraries, and EST sequences. Our research team is trying to sequence the genome of P. cinnamomi in order to gain a better understanding of this oomycete, to study changes in plant-pathogen relationships including those resulting from climate change and trying to decrease the pathogen’s impact on crops and plants in natural ecosystems worldwide. We present here a preliminary report of partially sequenced genomic DNA from P. cinnamomi encoding putative protein-coding sequences and tRNAs. Database analysis reveals the presence of genes conserved in oomycetes.