4 resultados para pharmaceutical compounds

em Instituto Politécnico de Bragança


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents the chemical profile of two edible species of mushrooms from the genus Leccinum: Leccinum molle (Bon) Bon and Leccinum vulpinum Watling, both harvested on the outskirts of Bragança (Northeastern Portugal). Both species were prepared and characterized regarding their content in nutrients (i.e., free sugars, fatty acids and vitamins), non-nutrients (i.e., phenolic and other organic acids) and antioxidant activity. To the best of our knowledge, no previous studies on the chemical characterization and bioactivity of these species have been undertaken. Accordingly, this study intends to increase the available information concerning edible mushroom species, as well as to highlight another important factor regarding the conservation of the mycological resources--their potential as sources of nutraceutical/pharmaceutical compounds. Overall, both species revealed similar nutrient profiles, with low fat levels, fructose, mannitol and trehalose as the foremost free sugars, and high percentages of mono- and polyunsaturated fatty acids. They also revealed the presence of bioactive compounds, namely phenolic (e.g., gallic acid, protocatechuic acid and p-hydroxybenzoic acid) and organic acids (e.g., citric and fumaric acids) and presented antioxidant properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Mill.), apart from being a functional food rich in carotenoids, vitamins and minerals, is also an important source of phenolic compounds [1 ,2]. As antioxidants, these functional molecules play an important role in the prevention of human pathologies and have many applications in nutraceutical, pharmaceutical and cosmeceutical industries. Therefore, the recovery of added-value phenolic compounds from natural sources, such as tomato surplus or industrial by-products, is highly desirable. Herein, the microwave-assisted extraction of the main phenolic acids and flavonoids from tomato was optimized. A S-Ieve! full factorial Box-Behnken design was implemented and response surface methodology used for analysis. The extraction time (0-20 min), temperature (60-180 "C), ethanol percentage (0-100%), solidlliquid ratio (5-45 g/L) and microwave power (0-400 W) were studied as independent variables. The phenolic profile of the studied tomato variety was initially characterized by HPLC-DAD-ESIIMS [2]. Then, the effect of the different extraction conditions, as defined by the used experimental design, on the target compounds was monitored by HPLC-DAD, using their UV spectra and retention time for identification and a series of calibrations based on external standards for quantification. The proposed model was successfully implemented and statistically validated. The microwave power had no effect on the extraction process. Comparing with the optimal extraction conditions for flavonoids, which demanded a short processing time (2 min), a low temperature (60 "C) and solidlliquid ratio (5 g/L), and pure ethanol, phenolic acids required a longer processing time ( 4.38 min), a higher temperature (145.6 •c) and solidlliquid ratio (45 g/L), and water as extraction solvent. Additionally, the studied tomato variety was highlighted as a source of added-value phenolic acids and flavonoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant tissue and organ culture has been extensively used from the beginning of the XX century for the study and comprehension of some primary biological mechanisms such as morphogenesis. However, with the increasing demand of the market for novel products derived from plants, in vitro culture became a reliable technique for the mass production of plant material. Moreover, the potential to use this technique for the production of some bioactive compounds, such as phenolic compounds, is immense since it allows the manipulation of the biosynthetic routes to increase the production and accumulation of specific compounds. This work intends to make a brief historical review of in vitro culture, highlighting its use for the production of bioactive compounds. Also, emphasizes the importance of phenolic compounds for the consumer as well reviews the metabolic pathways involved in its production in plant cells. Furthermore, it was carried out a comprehensive study on the work developed for the production of plant phenolic compounds in in vitro cultures, as well as on the type of elicitors used to increase of the same production; also a brief highlighting of the phenolic compounds which serve as elicitors. There are numerous reports directed to the production of phenolic extracts in in vitro plant cultures, however there is a lack in the production of individual phenolic compounds mainly due to the complexity of the biosynthetic routes and extraction procedures. Elicitation procedures are often used to increase the production of phenolics, archieving in most cases higher yields than in non-elicitated cultures. The increasing production of bioactive phenolic extracts/compounds allows for their further applicability, namely in the industry of functional foods or in pharmaceutical/medical fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elephant foot yam (Amorphophallus paeoniifolius (Dennst.) Nicolson) is an underground, unbranched deciduous plant that produces a large tubercle (rhizome) with recognized health effects. In this study, the influence of solvent nature (water, water/etanol (1:1) and absolute ethanol) and processing type (fresh, lyophilized and boiled) on the antioxidant activity and bioactive compounds extractability of elephant foot yam was evaluated. Extracts were compared for their contents in total phenolics, flavonoids and tannins. Moreover, their antioxidant capacity was assessed by the ferric reducing antioxidant power (FRAP) and the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH▪) scavenging capacity assays. Phenolics (154 mg GAE/L) and tannins (109 mg GAE/L) were maximized in lyophilized samples extracted with the hydroalcoholic solvent, which attained also the highest FRAP value (711 mg FSE/L). In turn, flavonoids reached the highest yields in lyophilized samples (95 mg ECE/L) extracted with pure ethanol, as well as the highest DPPH▪ scavenging activity. These findings might have practical applications to define the best processing methodology regarding the enhancement of elephant foot yam, either for prompt consumption, as well as to develop food supplements or pharmaceutical related products.