2 resultados para optimal bone formation
em Instituto Politécnico de Bragança
Resumo:
The boné drilling is a common surgical procedure in clinicai intei-ventions including the dentistry. Although not a novelty in medicine, the penetration of a sharp tool in the boné tissue continues to be a clinicai and surgical challenge, as many pertinent questions still remain without solutions. Mechanical damage to the boné tissue is one of the common complication associafed with the drilling process [l]. An excessive force generated by a cutting tool can lead to the formation of microcracks and fractures, and even cause permanent damage in the boné tissue that, in tum, can delay postoperative recovery [2]. The main goal of this paper is to investigate the effect of drill speed on mechanical damage during drilling of solid rigid foam materiais, with similar mechanical properties to the human boné. Experimental tests were performed on biomechanical blocks instrumented with strain gauges in different surface positions during the drilling process. Finite element (FE) simulations were performed to simulate the drilling process and validated with experimental results.
Resumo:
Dental implant is used to replace the natural dental root. The process to fix the dental implant in the maxillary bone needs a previous drilling operation. This machining operation involves the increasing of temperature in the drilled region which can reach values higher than 47°C and for this temperature is possible to occur the osseous necrosis [I]. The main goal of this work is to implement an optimization method to define the optimal drilling parameters that could minimize the drilling temperature. The proposal optimization method is the Taguchi method. This method has been used with success in machining processes optimization of metallic materials [2]. However, the Taguchi method is also used in medical applications, namely in dental medicine [3].