2 resultados para diuretic

em Instituto Politécnico de Bragança


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Naturally-occurring phytochemicals have received a pivotal attention in the last years, due to the increasing evidences of biological activities. Equisetum giganteum L., commonly known as “giant horsetail”, is a native plant from Central and South America, being largely used in dietary supplements as diuretic, hemostatic, antiinflammatory and anti-rheumatic agents [1,2]. The aim of the present study was to evaluate the antioxidant (scavenging effects on 2,2-diphenyl-1-picrylhydrazyl radicals- RSA, reducing power- RP, β-carotene bleaching inhibition- CBI and lipid peroxidation inhibition- LPI), anti-inflammatory (inhibition of NO production in lipopolysaccharidestimulated RAW 264.7 macrophages) and cytotoxic (in a panel of four human tumor cell lines: MCF-7- breast adenocarcinoma, NCI-H460- non-small cell lung cancer, HeLa- cervical carcinoma and HepG2- hepatocellular carcinoma; and in non-tumor porcine liver primary cells- PLP2) properties of E. giganteum, providing a phytochemical characterization of its extract (ethanol/water, 80:20, v/v), by using highperformance liquid chromatography coupled to diode array detection and electrospray ionisation mass spectrometry (HPLC-DAD–ESI/MS). E. giganteum presented fourteen phenolic compounds, two phenolic acids and twelve flavonol glycoside derivatives, mainly kaempferol derivatives, accounting to 81% of the total phenolic content, being kaempferol-O-glucoside-O-rutinoside, the most abundant molecule (7.6 mg/g extract). The extract exhibited antioxidant (EC50 values = 123, 136, 202 and 57.4 μg/mL for RSA, RP, CBI and LPI, respectively), anti-inflammatory (EC50 value = 239 μg/mL) and cytotoxic (GI50 values = 250, 258, 268 and 239 μg/mL for MCF-7, NCI-H460, HeLa and HepG2, respectively) properties, which were positively correlated with its concentration in phenolic compounds. Furthermore, up to 400 μg/mL, it did not revealed toxicity in non-tumor liver cells. Thus, this study highlights the potential of E. giganteum extracts as rich sources of phenolic compounds that can be used in the food, pharmaceutical and cosmetic fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Irradiation is a methodology qualified for dry ingredients preservation or decontamination and can be performed using various radiation sources and energy levels in accordance with the objectives to be achieved [1]. Electron beam irradiation is used mainly for food products with low density, while gamma irradiation is mainly used for large volumes [2]. Arenaria Montana L. has a high antioxidant potential and richness in bioactive phytochemicals. It is used in Portuguese traditional medicine, acting therapeutically as an anti-inflammatory and diuretic plant [3]. The aim of this work was to evaluate the effects of gamma and electron beam irradiation at different doses (I and 10 kGy) in the antioxidant activity of A. montana. Free radicals scavenging activity, reducing power and lipid peroxidation inhibition properties of its methanolic extracts and infusions were evaluated. Through a global analysis, it was concluded that the antioxidant activity proved to be higher in methanolic extracts in comparison with the infusions, where it decreased with increasing irradiation dose regardless of the technology used (gamma or electron beam). For methanolic extracts, electron beam resulted in increased antioxidant activity while gamma irradiation caused a decrease in these extracts. Thus, the antioxidant potential is variable depending not only on the type of radiation and the dose applied, but also on the solvent used in the preparation of the extracts (methanol or water).