2 resultados para Structural effects

em Instituto Politécnico de Bragança


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Looking for a better knowledge concerning water and ionic liquids (ILs) interactions, a systematic study of the activity coefficients of water in pyridinium, pyrrolidinium and piperidinium-based ILs at 298.2 K is here presented based on water activity measurements. Additionally, the study of the structural effects of the pyridinium-based cation is also pursued. The results show that non-aromatic ILs are interacting more with water than aromatic ones, and among the ortho, meta and para isomers of 1-butyl-methylpyridinium chloride, the ortho position confers a more hydrophilic character to that specific IL. The physicalchemistry of the solutions was interpreted based on dissociation constants, natural bond orbitals and excess enthalpies providing a sound basis for the interpretation of the experimental observations. These results show that hydrogen bonding controls the behavior of these systems, being the anion-water one of the most relevant interactions, but modulated by the anionecation interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioactive extracts were obtained from powdered carob pulp through an ultrasound extraction process and then evaluated in terms of antioxidant activity. Ten minutes of ultrasonication at 375 Hz were the optimal conditions leading to an extract with the highest antioxidant effects. After its chemical characterization, which revealed the preponderance of gallotannins, the extract (free and microencapsulated) was incorporated in yogurts. The microspheres were prepared using an extract/sodium alginate ratio of 100/400 (mg mg(-1)) selected after testing different ratios. The yogurts with the free extract exhibited higher antioxidant activity than the samples added with the encapsulated extracts, showing the preserving role of alginate as a coating material. None of the forms significantly altered the yogurt's nutritional value. This study confirmed the efficiency of microencapsulation to stabilize functional ingredients in food matrices maintaining almost the structural integrity of polyphenols extracted from carob pulp and furthermore improving the antioxidant potency of the final product.