2 resultados para Stone walls

em Instituto Politécnico de Bragança


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper present a study on the behaviour of tabique walls, concerning its fire resistance. This work is based on the experimental analysis of real scale tabique panels. Such walls were made in pine wood with an earth-based mortar finishing. In order to assess the earth-based mortar thickness effect on the fire resistance of the wall, three specimens were tested with three different mortar thicknesses of 15 mm, 10 mm and 5 mm. The earth-based mortar was previously analysed in the laboratory. The wooden structures were constructed based on traditional tabique technique. The experimental models were tested in a fire-resistance furnace, according to the ISO 834 standard fire. Temperatures were recorded using two data acquisition systems (spot measuring and field measuring). Fire resistance of test elements is expressed as the time during which the appropriate criteria have been satisfied so that one can predict the time before collapse, increasing both people and property safety. The obtained results are of great importance as they allow to improve the knowledge on tabique walls behaviour subjected to fire conditions. Two performance criteria were verified: the integrity criteria and the insulation criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stone masonry walls are present in many buildings and historical monuments, with undeniable asset value, but also in old buildings housing both in Portugal and in Europe. Most of these buildings in masonry are in certain cases in a high state of degradation needing urgent intervention. This requires the identification of deficiencies and the application of appropriate intervention techniques. One of the possible techniques for structural consolidation works of stone masonry walls is the injection of fluid mortars currently called grouts. The choice of grouts is very important with regard in particular to their chemical and physical properties. In this study, carried out under the Master of Chemical Engineering, two types of lime-based grouts were used, in order to evaluate and compare their chemical resistance due to the crystallization of soluble salts. One of the grouts is a pre-dosed blend commercially available, Mape-Antique I from company Mapei (CA), and the second grout is a mixture prepared in the laboratory (LB), comprising metakaolin, cement, hydrated lime, water and superplasticizer. With the purpose of evaluating the action of sulphates on these grouts, a series of samples underwent several wetting-drying cycles using two different temperatures, 20 °C and 50 °C. During the experiment it was determined the change of weight and compressive strength in the analyzed grouts, as well as the sulphate ion concentration and pH of the solution in which the samples were dipped. The commercial grout (CA) apparently has a greater chemical resistance to sulphates. However grout LB showed to have positive results in some parameters.