4 resultados para SPREADABLE PROCESSED CHEESE
em Instituto Politécnico de Bragança
Resumo:
The biochemistry of cheese ripening involves mechanisms such as glycolysis, proteolysis and lipolysis. Fatty acids are released by the action of lipases from different sources, milk, rennet, bacteria, moulds included as secondary starters, and other exogenous lipases, during lipolysis [1]. The composition of the lipid fraction contributes positively to the flavour of cheese, for being precursors of more complex aroma compounds responsible for the characteristic “goaty flavour” of goat cheeses [2]. Goat milk is recognized by its easier digestibility, alkalinity, buffering capacity and certain therapeutic values in medicine and human nutrition [3]. A high total content of fatty acids is strongly linked to a rancid and tart off flavour in goat milk and may be considered undesirable in most cheese varieties [4]. In this sense, the purpose of the present study was to examine the composition and changes in fatty acids and saponification value of goat cheese during curing period (2, 7 and 12 months). Goat cheese was made in industrial unit of Cachão - Mirandela (Trás-os- Montes) with raw milk Serrana goats’ race, salt and rennet from animal origin. During the first two months, the samples were stored in a ripening chamber (9.5-11 °C and RH 75-85%). From the second month to one year, the samples were stored in a preservation chamber (10.5-12 °C and RH 75-85%). The fatty acids profile of the inner part of the cheese was analyzed by gas-chromatography coupled to flame ionization detection (GC-FID). The degree of saponification was determined both in the crust and inside the cheese by HCl titration of ethanol KOH solution of the samples. Twenty-six fatty acids (FA) were identified and quantified in the inner part of the cheese (total fat was 45-46 g/100 g during the curing period). Saturated fatty acids (SFA) did not change up to 7 months of curing, increasing only after 12 months, being palmitic (C16:0), stearic (C18:0), myristic (C14:0) and capric (C10:0) acids the most abundant FA in this class. Monounsaturated fatty acids (MUFA) decreased only after 12 months, and oleic acid (C18:1) was the predominant FA. In polyunsaturated fatty acids (PUFA) class, the most abundant were linoleic (C18:2) and linolenic (C18:3) acids, and followed the same tendency of MUFA. This is corroborated by an increase in the degree of saponification, either in the crust as in the inner part of the cheese, after 12 months of curing, probably related with the saturation of the fatty acids [3]. Extra-long curing can be done in cheeses produced with goat milk up to seven months of storage without changing the total fat and individual FA content.
Resumo:
Food industry is focused on the development of novel functional foods containing health promoting natural ingredients. Natural antioxidants present important health benefits like the prevention of several diseases related to oxidative stress [1,2]. Foeniculum vulgare Mill. (fennel) is a source of those compounds with proved antioxidant potential [3]. Herein, after evaluation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and reducing power of fennel (provided by Américo Duarte Paixão Lda.) decoction, we propose its incorporation into cottage cheese (produced by Queijos Casa Matias Lda.). Three groups of cottage cheese samples were prepared: control; samples with fennel decoction (incorporated at EC25 value=0.35 mg/mL, previously determined by DPPH assay); and samples with fennel powder (incorporated at 1.75 mg/mL, considering the decoction yield=20%). The samples were submitted to an evaluation of DPPH scavenging activity and reducing power immediately after the incorporations, and after 7 and 14 days of storage, at 4 ºC. The incorporation of fennel improved the antioxidant activity of cottage cheese. Samples incorporated with plant powder revealed higher antioxidant properties than samples incorporated with decoction, either in 0 or 7 days of storage. After 14 days, cottage cheese incorporated with fennel decoction gave the highest DPPH scavenging activity (46.72±0.09 mg/mL). A decrease in the antioxidant potential of the cottage cheese with fennel was observed along the shelf life. Nevertheless, it is important to highlight that the samples still display antioxidant properties. Studies regarding the effects of the incorporation of these natural ingredients on nutritional and chemical composition of cottage cheese are in course
Resumo:
Chestnut flowers, lemon balm plants and their decoctions were incorporated into "Serra da Estrela" cheese, to assess their potential to preserve its nutritional properties and provide new foodstuffs. The analyses were carried out after the normal ripening period of 1month and after 6months of storage. The most abundant nutrients were proteins and fats. The most abundant minerals were Ca and Na, while C16:0 and C18:1 were the main fatty acids. Saturated fatty acids were the most abundant, followed by the monounsaturated. Moisture seemed to be lower in the samples with the plants incorporated. The dried plants, when incorporated, seemed to be more efficient as preservers then the decoctions, although these better preserved the proteins. These plants can be regarded as promising natural preservers in foodstuffs cheese, given the preservation of key parameters and the slight impact on the nutritional value.
Resumo:
Antitumor, antimicrobial and antioxidant activities of basil were studied, along with its characterization in phenolic compounds, organic acids and soluble sugars. The results placed basil as a valuable candidate for functionalization and conservation of food products, maintaining their nutritional properties, while increasing their shelf life and potential health effects. The basil leaves were then incorporated in "Serra da Estrela Cheese", either in its dehydrated form or as a decoction. The cheeses were then subject to a nutritional evaluation, being characterized for their fatty acids, minerals and CIE color parameters. To assess the combined effects of plant incorporation and storage time, a 2-way ANOVA was used to process the results, further analysed through a linear discriminant analysis. Overall, basil leaves provided antioxidant activity to the cheeses, reduced the moisture, and preserved the unsaturated fatty acids and proteins. Comparing both incorporation types, the decoctions had a higher functionalizing and conservative effect.