3 resultados para Roteadores virtuais

em Instituto Politécnico de Bragança


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sociedade da informação, enquanto paradigma organizador da sociedade ocidental, enquadra-se num contexto de globalização, caracterizado pelo desenvolvimento exponencial e acelerado das tecnologias de informação e comunicação (TIC). Estas tecnologias possibilitam uma rápida produção e distribuição da informação e do conhecimento científico, ao mesmo tempo que aceleram a mudança e a desatualização dos conhecimentos, das competências e, suscitam, em consequência, a necessidade de formação permanente. A utilização das TIC em todos os campos da vida pessoal e profissional altera as coordenadas socioculturais, tornando a sociedade mais mediatizada nos processos de comunicação, de interação, de socialização, de trabalho, de aprendizagem e de formação. Este quadro de referência tem evidentes repercussões na adequação dos atuais sistemas educativos e de formação profissional. É neste enquadramento que surge este trabalho que intitulamos A colaboração em ambientes virtuais: aprender e formar no século XXI no qual tanto valorizamos o aprender e formar em contextos colaborativos, como debatemos o contributo que os ambientes virtuais, sustentados pelas TIC ou pelas tecnologias digitais, podem proporcionar para o desenvolvimento da educação e da formação. A partir da bibliografia da especialidade e tendo desenvolvido trabalho empírico no terreno (no âmbito do projeto doutoral de Meirinhos (2007), preparamos um texto onde tentamos sistematizar o que de mais relevante nos pareceu poder interessar a profissionais da educação, a investigadores e a todos os que se interessem pela educação, pela formação e pelos desafios colocados pelas constantes mudanças tecnológicas que temos experimentado e vivido. Começamos por abordar e caracterizar a emergência de um novo contexto de aprendizagem e de formação, após o que aprofundamos, com algum pormenor, o processo evolutivo decorrido desde que apareceu a educação a distância até à realidade mais atual do e-learning. Em seguida, analisamos e refletimos pormenorizadamente os conceitos de cooperação e colaboração e as inter-relações entre os mesmos; em consequência e naturalmente, apresentamos e caracterizamos, depois, perspetivas atuais sobre comunidades virtuais de aprendizagem. Finalmente, conscientes das implicações e mudanças que estas novas realidades suscitam nas funções de formandos e formadores, discutimos a emergência de uma nova relação pedagógica e enunciamos os elementos de um novo paradigma educativo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Em Bioinformática são frequentes problemas cujo tratamento necessita de considerável poder de processamento/cálculo e/ou grande capacidade de armazenamento de dados e elevada largura de banda no acesso aos mesmos (de forma não comprometer a eficiência do seu processamento). Um exemplo deste tipo de problemas é a busca de regiões de similaridade em sequências de amino-ácidos de proteínas, ou em sequências de nucleótidos de DNA, por comparação com uma dada sequência fornecida (query sequence). Neste âmbito, a ferramenta computacional porventura mais conhecida e usada é o BLAST (Basic Local Alignment Search Tool) [1]. Donde, qualquer incremento no desempenho desta ferramenta tem impacto considerável (desde logo positivo) na atividade de quem a utiliza regularmente (seja para investigação, seja para fins comerciais). Precisamente, desde que o BLAST foi inicialmente introduzido, foram surgindo diversas versões, com desempenho melhorado, nomeadamente através da aplicação de técnicas de paralelização às várias fases do algoritmo (e. g., partição e distribuição das bases de dados a pesquisar, segmentação das queries, etc. ), capazes de tirar partido de diferentes ambientes computacionais de execução paralela, como: máquinas multi-core (BLAST+ 2), clusters de nós multi-core (mpiBLAST3J e, mais recentemente, co-processadores aceleradores como GPUs" ou FPGAs. É também possível usar as ferramentas da família BLAST através de um interface/sítio WEB5, que permite, de forma expedita, a pesquisa de uma variedade de bases de dados conhecidas (e em permanente atualização), com tempos de resposta suficientemente pequenos para a maioria dos utilizadores, graças aos recursos computacionais de elevado desempenho que sustentam o seu backend. Ainda assim, esta forma de utilização do BLAST poderá não ser a melhor opção em algumas situações, como por exemplo quando as bases de dados a pesquisar ainda não são de domínio público, ou, sendo-o, não estão disponíveis no referido sitio WEB. Adicionalmente, a utilização do referido sitio como ferramenta de trabalho regular pressupõe a sua disponibilidade permanente (dependente de terceiros) e uma largura de banda de qualidade suficiente, do lado do cliente, para uma interacção eficiente com o mesmo. Por estas razões, poderá ter interesse (ou ser mesmo necessário) implantar uma infra-estrutura BLAST local, capaz de albergar as bases de dados pertinentes e de suportar a sua pesquisa da forma mais eficiente possível, tudo isto levando em conta eventuais constrangimentos financeiros que limitam o tipo de hardware usado na implementação dessa infra-estrutura. Neste contexto, foi realizado um estudo comparativo de diversas versões do BLAST, numa infra-estrutura de computação paralela do IPB, baseada em componentes commodity: um cluster de 8 nós (virtuais, sob VMWare ESXi) de computação (com CPU Í7-4790K 4GHz, 32GB RAM e 128GB SSD) e um nó dotado de uma GPU (CPU Í7-2600 3.8GHz, 32GB RAM, 128 GB SSD, 1 TB HD, NVIDIA GTX 580). Assim, o foco principal incidiu na avaliação do desempenho do BLAST original e do mpiBLAST, dado que são fornecidos de base na distribuição Linux em que assenta o cluster [6]. Complementarmente, avaliou-se também o BLAST+ e o gpuBLAST no nó dotado de GPU. A avaliação contemplou diversas configurações de recursos, incluindo diferentes números de nós utilizados e diferentes plataformas de armazenamento das bases de dados (HD, SSD, NFS). As bases de dados pesquisadas correspondem a um subconjunto representativo das disponíveis no sitio WEB do BLAST, cobrindo uma variedade de dimensões (desde algumas dezenas de MBytes, até à centena de GBytes) e contendo quer sequências de amino-ácidos (env_nr e nr), quer de nucleótidos (drosohp. nt, env_nt, mito. nt, nt e patnt). Para as pesquisas foram 'usadas sequências arbitrárias de 568 letras em formato FASTA, e adoptadas as opções por omissão dos vários aplicativos BLAST. Salvo menção em contrário, os tempos de execução considerados nas comparações e no cálculo de speedups são relativos à primeira execução de uma pesquisa, não sendo assim beneficiados por qualquer efeito de cache; esta opção assume um cenário real em que não é habitual que uma mesma query seja executada várias vezes seguidas (embora possa ser re-executada, mais tarde). As principais conclusões do estudo comparativo realizado foram as seguintes: - e necessário acautelar, à priori, recursos de armazenamento com capacidade suficiente para albergar as bases de dados nas suas várias versões (originais/compactadas, descompactadas e formatadas); no nosso cenário de teste a coexistência de todas estas versões consumiu 600GBytes; - o tempo de preparação (formataçâo) das bases de dados para posterior pesquisa pode ser considerável; no nosso cenário experimental, a formatação das bases de dados mais pesadas (nr, env_nt e nt) demorou entre 30m a 40m (para o BLAST), e entre 45m a 55m (para o mpiBLAST); - embora economicamente mais onerosos, a utilização de discos de estado sólido, em alternativa a discos rígidos tradicionais, permite melhorar o tempo da formatação das bases de dados; no entanto, os benefícios registados (à volta de 9%) ficam bastante aquém do inicialmente esperado; - o tempo de execução do BLAST é fortemente penalizado quando as bases de dados são acedidas através da rede, via NFS; neste caso, nem sequer compensa usar vários cores; quando as bases de dados são locais e estão em SSD, o tempo de execução melhora bastante, em especial com a utilização de vários cores; neste caso, com 4 cores, o speedup chega a atingir 3.5 (sendo o ideal 4) para a pesquisa de BDs de proteínas, mas não passa de 1.8 para a pesquisa de BDs de nucleótidos; - o tempo de execução do mpiBLAST é muito prejudicado quando os fragmentos das bases de dados ainda não se encontram nos nós do cluster, tendo que ser distribuídos previamente à pesquisa propriamente dita; após a distribuição, a repetição das mesmas queries beneficia de speedups de 14 a 70; porém, como a mesma base de dados poderá ser usada para responder a diferentes queries, então não é necessário repetir a mesma query para amortizar o esforço de distribuição; - no cenário de teste, a utilização do mpiBLAST com 32+2 cores, face ao BLAST com 4 cores, traduz-se em speedups que, conforme a base de dados pesquisada (e previamente distribuída), variam entre 2 a 5, valores aquém do máximo teórico de 6.5 (34/4), mas ainda assim demonstradores de que, havendo essa possibilidade, compensa realizar as pesquisas em cluster; explorar vários cores) e com o gpuBLAST, realizada no nó com GPU (representativo de uma workstation típica), permite aferir qual a melhor opção no caso de não serem possíveis pesquisas em cluster; as observações realizadas indicam que não há diferenças significativas entre o BLAST e o BLAST+; adicionalmente, o desempenho do gpuBLAST foi sempre pior (aproximadmente em 50%) que o do BLAST e BLAST+, o que pode encontrar explicação na longevidade do modelo da GPU usada; - finalmente, a comparação da melhor opção no nosso cenário de teste, representada pelo uso do mpiBLAST, com o recurso a pesquisa online, no site do BLAST5, revela que o mpiBLAST apresenta um desempenho bastante competitivo com o BLAST online, chegando a ser claramente superior se se considerarem os tempos do mpiBLAST tirando partido de efeitos de cache; esta assunção acaba por se justa, Já que BLAST online também rentabiliza o mesmo tipo de efeitos; no entanto, com tempos de pequisa tão reduzidos (< 30s), só é defensável a utilização do mpiBLAST numa infra-estrutura local se o objetivo for a pesquisa de Bds não pesquisáveis via BLAS+ online.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os procedimentos cirúrgicos requeridos no tratamento de diversas patologias podem ser mais simples, baratos e eficientes com o uso das tecnologias de visualização e análise tridimensional de imagens médicas. Além de facilitar o diagnóstico, os modelos virtuais permitem ao cirurgião um planeamento detalhado e simulação de intervenções complexas. Estes modelos virtuais permitem a melhoria da capacidade de visualização, interação e otimização perante a situação clínica, possibilitando a identificação precoce de problemas. O objetivo deste trabalho é a análise do escoamento sanguíneo na aorta abdominal com aneurisma. A primeira etapa do trabalho consistiu na extração de dados anatómicos de um aneurisma, com recurso à imagiologia médica e à reconstrução do biomodelo digital Posteriormente, efetuou-se o estudo numérico do escoamento sanguíneo no biomodelo construído. Nas simulações numéricas, realizadas para escoamento laminar, a reologia do sangue foi descrita por três modelos: modelo Newtoniano, modelo de Carreau e Lei da Potência. Com a utilização destes três modelos foi possível averiguar o impacto das propriedades não-Newtonianas do sangue nos fluxos estudados. Adicionalmente, as simulações realizadas no biomodelo foram efetuadas num domínio geométrico similar ao biomodelo, mas mais simples. Esta análise foi efetuada de modo a averiguar se para as condições estudadas era possível recorrer a um modelo simplificado sem comprometer a análise do escoamento pretendido. Conclui-se que a utilização do modelo simplificado poderá ser vantajoso na análise de determinadas propriedades, uma vez que apresentou resultados compatíveis com os obtidos com o modelo real.