2 resultados para Revolutionary Tendency of Peronism
em Instituto Politécnico de Bragança
Resumo:
The biochemistry of cheese ripening involves mechanisms such as glycolysis, proteolysis and lipolysis. Fatty acids are released by the action of lipases from different sources, milk, rennet, bacteria, moulds included as secondary starters, and other exogenous lipases, during lipolysis [1]. The composition of the lipid fraction contributes positively to the flavour of cheese, for being precursors of more complex aroma compounds responsible for the characteristic “goaty flavour” of goat cheeses [2]. Goat milk is recognized by its easier digestibility, alkalinity, buffering capacity and certain therapeutic values in medicine and human nutrition [3]. A high total content of fatty acids is strongly linked to a rancid and tart off flavour in goat milk and may be considered undesirable in most cheese varieties [4]. In this sense, the purpose of the present study was to examine the composition and changes in fatty acids and saponification value of goat cheese during curing period (2, 7 and 12 months). Goat cheese was made in industrial unit of Cachão - Mirandela (Trás-os- Montes) with raw milk Serrana goats’ race, salt and rennet from animal origin. During the first two months, the samples were stored in a ripening chamber (9.5-11 °C and RH 75-85%). From the second month to one year, the samples were stored in a preservation chamber (10.5-12 °C and RH 75-85%). The fatty acids profile of the inner part of the cheese was analyzed by gas-chromatography coupled to flame ionization detection (GC-FID). The degree of saponification was determined both in the crust and inside the cheese by HCl titration of ethanol KOH solution of the samples. Twenty-six fatty acids (FA) were identified and quantified in the inner part of the cheese (total fat was 45-46 g/100 g during the curing period). Saturated fatty acids (SFA) did not change up to 7 months of curing, increasing only after 12 months, being palmitic (C16:0), stearic (C18:0), myristic (C14:0) and capric (C10:0) acids the most abundant FA in this class. Monounsaturated fatty acids (MUFA) decreased only after 12 months, and oleic acid (C18:1) was the predominant FA. In polyunsaturated fatty acids (PUFA) class, the most abundant were linoleic (C18:2) and linolenic (C18:3) acids, and followed the same tendency of MUFA. This is corroborated by an increase in the degree of saponification, either in the crust as in the inner part of the cheese, after 12 months of curing, probably related with the saturation of the fatty acids [3]. Extra-long curing can be done in cheeses produced with goat milk up to seven months of storage without changing the total fat and individual FA content.
Resumo:
Harvest efficiency is defined as the percentage of fruits harvested by total production. The percentage of fruits harvested is less than 100% when working with trunk shakers to detach olives. It is important to increase the percentage of fruits harvested in order to increase farmer’s income. This objective can be achieved knowing the evolution of the main factors affecting fruit detachment. Fruit removal force (FRF), fruit weight (P) and the ratio between them are important for harvest efficiency. Field trials took place for two years (2013-2014) in Vilariça Valley, northeast Portugal in an olive orchard with ‘Cobrançosa Transmontana’ cultivar. It was adopted a mechanical harvesting system based on a trunk shaker to detach fruits, and an inverted umbrella to collect fruits. Elementary operation times were measured in seconds to evaluate work rates. FRF and P were measured in the ripening period, to evaluate their evolution. In this paper are presented the preliminary results of the ratio FRF (fruit removal force)/fruit weight evolution during the ripening period (P) and the results of the equipment work rate (trees h-1). The ratio FRF/P has predominantly descendant values in the weeks before harvest, from 140 to 80 as a result of a FRF downward variation from 4.9 to 2.94 N and an upward variation of P from 0.0294 to 0.0637 N. The FRF/P ratio stabilizes the decline in the last week of November just before harvesting, registering in some cases a slight increase in consequence of FRF increase higher than P increase (contrary to the tendency of previous weeks). Equipment work rate showed values between 40 and 57 trees h-1, confirming previous results.