1 resultado para Refined oil products demand
em Instituto Politécnico de Bragança
Filtro por publicador
- Repository Napier (1)
- Academic Research Repository at Institute of Developing Economies (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- Aquatic Commons (19)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (18)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (28)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Brock University, Canada (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (28)
- Center for Jewish History Digital Collections (10)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (3)
- Cochin University of Science & Technology (CUSAT), India (7)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (12)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (5)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (53)
- Helda - Digital Repository of University of Helsinki (46)
- Indian Institute of Science - Bangalore - Índia (93)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (5)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (9)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (20)
- Queensland University of Technology - ePrints Archive (344)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (9)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (58)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (6)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (17)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (2)
- University of Michigan (26)
- University of Queensland eSpace - Australia (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
This study is aimed to model and forecast the tourism demand for Mozambique for the period from January 2004 to December 2013 using artificial neural networks models. The number of overnight stays in Hotels was used as representative of the tourism demand. A set of independent variables were experimented in the input of the model, namely: Consumer Price Index, Gross Domestic Product and Exchange Rates, of the outbound tourism markets, South Africa, United State of America, Mozambique, Portugal and the United Kingdom. The best model achieved has 6.5% for Mean Absolute Percentage Error and 0.696 for Pearson correlation coefficient. A model like this with high accuracy of forecast is important for the economic agents to know the future growth of this activity sector, as it is important for stakeholders to provide products, services and infrastructures and for the hotels establishments to adequate its level of capacity to the tourism demand.