1 resultado para Recurrent Neural Network
em Instituto Politécnico de Bragança
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (34)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (20)
- Boston University Digital Common (44)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (15)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (37)
- CentAUR: Central Archive University of Reading - UK (89)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (41)
- Cochin University of Science & Technology (CUSAT), India (11)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (3)
- Duke University (3)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (50)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (7)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (92)
- Queensland University of Technology - ePrints Archive (56)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (97)
- Research Open Access Repository of the University of East London. (5)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (15)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (6)
- University of Michigan (1)
- University of Queensland eSpace - Australia (26)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (2)
Resumo:
This study is aimed to model and forecast the tourism demand for Mozambique for the period from January 2004 to December 2013 using artificial neural networks models. The number of overnight stays in Hotels was used as representative of the tourism demand. A set of independent variables were experimented in the input of the model, namely: Consumer Price Index, Gross Domestic Product and Exchange Rates, of the outbound tourism markets, South Africa, United State of America, Mozambique, Portugal and the United Kingdom. The best model achieved has 6.5% for Mean Absolute Percentage Error and 0.696 for Pearson correlation coefficient. A model like this with high accuracy of forecast is important for the economic agents to know the future growth of this activity sector, as it is important for stakeholders to provide products, services and infrastructures and for the hotels establishments to adequate its level of capacity to the tourism demand.