2 resultados para Rasch modelling, structural equation modelling, experimental design

em Instituto Politécnico de Bragança


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is important to assess young children's perceived Fundamental Movement Skill (FMS) competence in order to examine the role of perceived FMS competence in motivation toward physical activity. Children's perceptions of motor competence may vary according to the culture/country of origin; therefore, it is also important to measure perceptions in different cultural contexts. The purpose was to assess the face validity, internal consistency, test–retest reliability and construct validity of the 12 FMS items in the Pictorial Scale for Perceived Movement Skill Competence for Young Children (PMSC) in a Portuguese sample. Methods Two hundred one Portuguese children (girls, n = 112), 5 to 10 years of age (7.6 ± 1.4), participated. All children completed the PMSC once. Ordinal alpha assessed internal consistency. A random subsamples (n = 47) were reassessed one week later to determine test–retest reliability with Bland–Altman method. Children were asked questions after the second administration to determine face validity. Construct validity was assessed on the whole sample with a Bayesian Structural Equation Modelling (BSEM) approach. The hypothesized theoretical model used the 12 items and two hypothesized factors: object control and locomotor skills. Results The majority of children correctly identified the skills and could understand most of the pictures. Test–retest reliability analysis was good, with an agreement ration between 0.99 and 1.02. Ordinal alpha values ranged from acceptable (object control 0.73, locomotor 0.68) to good (all FMS 0.81). The hypothesized BSEM model had an adequate fit. Conclusions The PMSC can be used to investigate perceptions of children's FMS competence. This instrument can also be satisfactorily used among Portuguese children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Mill.), apart from being a functional food rich in carotenoids, vitamins and minerals, is also an important source of phenolic compounds [1 ,2]. As antioxidants, these functional molecules play an important role in the prevention of human pathologies and have many applications in nutraceutical, pharmaceutical and cosmeceutical industries. Therefore, the recovery of added-value phenolic compounds from natural sources, such as tomato surplus or industrial by-products, is highly desirable. Herein, the microwave-assisted extraction of the main phenolic acids and flavonoids from tomato was optimized. A S-Ieve! full factorial Box-Behnken design was implemented and response surface methodology used for analysis. The extraction time (0-20 min), temperature (60-180 "C), ethanol percentage (0-100%), solidlliquid ratio (5-45 g/L) and microwave power (0-400 W) were studied as independent variables. The phenolic profile of the studied tomato variety was initially characterized by HPLC-DAD-ESIIMS [2]. Then, the effect of the different extraction conditions, as defined by the used experimental design, on the target compounds was monitored by HPLC-DAD, using their UV spectra and retention time for identification and a series of calibrations based on external standards for quantification. The proposed model was successfully implemented and statistically validated. The microwave power had no effect on the extraction process. Comparing with the optimal extraction conditions for flavonoids, which demanded a short processing time (2 min), a low temperature (60 "C) and solidlliquid ratio (5 g/L), and pure ethanol, phenolic acids required a longer processing time ( 4.38 min), a higher temperature (145.6 •c) and solidlliquid ratio (45 g/L), and water as extraction solvent. Additionally, the studied tomato variety was highlighted as a source of added-value phenolic acids and flavonoids.