2 resultados para Partially grouted masonry

em Instituto Politécnico de Bragança


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stone masonry walls are present in many buildings and historical monuments, with undeniable asset value, but also in old buildings housing both in Portugal and in Europe. Most of these buildings in masonry are in certain cases in a high state of degradation needing urgent intervention. This requires the identification of deficiencies and the application of appropriate intervention techniques. One of the possible techniques for structural consolidation works of stone masonry walls is the injection of fluid mortars currently called grouts. The choice of grouts is very important with regard in particular to their chemical and physical properties. In this study, carried out under the Master of Chemical Engineering, two types of lime-based grouts were used, in order to evaluate and compare their chemical resistance due to the crystallization of soluble salts. One of the grouts is a pre-dosed blend commercially available, Mape-Antique I from company Mapei (CA), and the second grout is a mixture prepared in the laboratory (LB), comprising metakaolin, cement, hydrated lime, water and superplasticizer. With the purpose of evaluating the action of sulphates on these grouts, a series of samples underwent several wetting-drying cycles using two different temperatures, 20 °C and 50 °C. During the experiment it was determined the change of weight and compressive strength in the analyzed grouts, as well as the sulphate ion concentration and pH of the solution in which the samples were dipped. The commercial grout (CA) apparently has a greater chemical resistance to sulphates. However grout LB showed to have positive results in some parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partially encased columns have significant fire resistant. However, it is not possible to assess the fire resistance of such members simply by considering the temperature of the steel. The presence of concrete increases the mass and thermal inertia of the member and the variation of temperature within the cross section, in both the steel and concrete components. The annex G of EN1994-1-2 allows to calculate the load carrying capacity of partially encased columns, for a specific fire rating time, considering the balanced summation method. New formulas will be used to calculate the plastic resistance to axial compression and the effective flexural stiffness. These two parameters are used to calculate the buckling resistance. The finite element method is used to compare the results of the elastic critical load for different fire ratings of 30 and 60 minutes. The buckling resistance is also calculated by the finite element method, using an incremental and iterative procedure. This buckling resistance is also compared with the simple calculation method, evaluating the design buckling curve that best fits the results.