1 resultado para Parallel Evolutionary Algorithms
em Instituto Politécnico de Bragança
Filtro por publicador
- Repository Napier (3)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (19)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Boston University Digital Common (3)
- Brock University, Canada (11)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (15)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (9)
- CentAUR: Central Archive University of Reading - UK (40)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (6)
- Cochin University of Science & Technology (CUSAT), India (2)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (20)
- Helda - Digital Repository of University of Helsinki (40)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (168)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Leiria (2)
- Instituto Politécnico do Porto, Portugal (6)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (6)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (9)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (27)
- Queensland University of Technology - ePrints Archive (288)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (41)
- SAPIENTIA - Universidade do Algarve - Portugal (6)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (33)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (3)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (4)
- University of Queensland eSpace - Australia (11)
- WestminsterResearch - UK (5)
Resumo:
Evolutionary-based algorithms play an important role in finding solutions to many problems that are not solved by classical methods, and particularly so for those cases where solutions lie within extreme non-convex multidimensional spaces. The intrinsic parallel structure of evolutionary algorithms are amenable to the simultaneous testing of multiple solutions; this has proved essential to the circumvention of local optima, and such robustness comes with high computational overhead, though custom digital processor use may reduce this cost. This paper presents a new implementation of an old, and almost forgotten, evolutionary algorithm: the population-based incremental learning method. We show that the structure of this algorithm is well suited to implementation within programmable logic, as compared with contemporary genetic algorithms. Further, the inherent concurrency of our FPGA implementation facilitates the integration and testing of micro-populations.