2 resultados para Organic-inorganic nanocomposites
em Instituto Politécnico de Bragança
Resumo:
Several motivations have prompted the scientific community towards the application of hybrid magnetic carbon nanocomposites in catalytic wet peroxide oxidation (CWPO) processes. The most relevant literature on this topic is reviewed, with a special focus on the synergies that can arise from the combination of highly active and magnetically separable iron species with the easily tuned properties of carbon-based materials. These are mainly ascribed to increased adsorptive interactions, to good structural stability and low leaching levels of the metal species, and to increased regeneration and dispersion of the active sites, which are promoted by the presence of the carbon-based materials in the composites. The most significant features of carbon materials that may be further explored in the design of improved hybrid magnetic catalysts are also addressed, taking into consideration the experimental knowledge gathered by the authors in their studies and development of carbon-based catalysts for CWPO. The presence of stable metal impurities, basic active sites and sulphur-containing functionalities, as well as high specific surface area, adequate porous texture, adsorptive interactions and structural defects, are shown to increase the activity of carbon materials when applied in CWPO, while the presence of acidic oxygen-containing functionalities has the opposite effect.
Resumo:
Hybrid magnetic graphitic nanocomposites (MGNC) prepared by inclusion of magnetite nanoparticles (obtained by coprecipitation) into an organic-organic self-assembly system, followed by calcination, revealed high activity for the catalytic wet peroxide oxidation (CWPO) of 4-nitrophenol solutions (5 g L-l), with pollutant removais up to 1245 mg g-' h-l being obtained when considering the mass ratio [pollutant]/[catalyst] =10. The stability of the MGNC catalyst against metal leaching was ascribed to the confinement effect of the carbon based material. These observations, together with the magnetically recoverable characteristics of MGNC, open new prospects for the wide use of this catalyst in highly efficient CWPO applications.