4 resultados para ORGANIC MERCURY COMPOUNDS
em Instituto Politécnico de Bragança
Resumo:
Cork boiling water is an aqueous and complex dark liquor with high concentration of phenolic compounds such as phenolic acids and tannins [1, 2], which are considered biorecalcitrants [2]. Ionizing radiation has been widely studied as an alternative technology for the degradation of organic contaminants without the addition of any other (e.g.: Fenton technologies). The aim of this work was to identify the compounds present in cork boiling water and further evaluate the resulting stable degradation products after gamma irradiation. The irradiation experiments of standard solutions were carried out at room temperature using a Co-60 experimental equipment. The applied absorbed doses were 20 and 50 kGy at a dose rate of 1.5 kGy/h, determined by routine dosimeters [3]. The identification of radiolytic products was carried out by HPLC-DAD-ESI/MS. The phenolic compounds were identified by comparing their retention times and UV–vis and mass spectra with those obtained from standard compounds, when available, as well as by comparing the obtained information with available data reported in the literature. Concerning the obtained results and the literature review, the main cork wastewater components are: quinic, gallic, protocatechuic, vanillic, syringic and ellagic acids. Based on this, we used protocatechuic, vanillic and syringic acids as model compounds to study their degradation by gamma radiation in order to identify the corresponding radiolytic products. Standard aqueous solutions were irradiated and the derivatives of each model compound are represented in figure 1. The obtained results seem to demonstrate that the derivatives of the parent compounds could also be phenolic acids, since it was observed the loss of 44 u (CO2) from the [M-H]- ions. Gallic and protocatechuic acids are identified as derivatives of vanillic and syringic acids, and gallic acid as a protocatechuic acid derivative. Compound 5 ([M-H]- at m/z 169) was tentatively identified as 2,4,6-trihydroxybenzoic acid, since its fragmentation pattern (m/z 151, 125 and 107) is similar to that previously reported in literature [4]. The structure of compound 7 was proposed based on the molecular ion and its fragmentation and compound 6 remains unknown.
Resumo:
Aging process is conceived as a normal stage during human life cycle, but it is also considered a hot topic among scientists and medical community. Alarming rates of premature aging and oxidative stress-related diseases have increasingly affect human individuals. Stress, pollution and exposition to chemical substances are considered the main triggering factors for those conditions; in addition, they also suppress the immune system and, therefore, improve organic vulnerability and occurrence of opportunistic infections [I]. Apart from the associated morbidity and mortality, the increasing rates of antimicrobial resistance improve the severity of the clinical conditions [2]. Botanical preparations possess a multitude of bioactive properties, namely acting as antimicrobials, antioxidants, and homeostasis modulators. Thus, upcoming alternatives, mainly based in plant phytochemicals, are necessary to improve the wellbeing as also life expectancy of individuals. The present study aims to evaluate and to compare both antioxidant and antimicrobial properties of plant extracts rich in phenolic compounds. Among the tested plants, Glycyrrhiza glabra L. (licorice) evidenced the most pronounced free radicals scavenging and antimicrobial effects, followed by Salvia officina/is L. (sage), Thymus vulgaris L. (thyme) and Origanum vulgare L. (oregano). Eucalyptus globulus Labill. (blue gum) and Juglans regia L. (walnut) also showed a high effect, while Pterospartum tridentatum (L.) Willk. (carqueja) and Rubus ulmifolius Schott (elm leaf blackberry) displayed moderate effects, and lastly, Tabebuia impetigirwsa (Mart. ex DC) Standley (pau d'arco), Foeniculum vulgare Miller (fennel), Rosa canina L. (rose hips) and Matricaria recutita L. (chamomile) gave only slight effects. In general, the most pronounced bioactivities were observed in the plant preparations (infusion>decoction>hydromethanolic extract) with higher levels of phenolic compounds (both flavonoids and phenolic acids). The observed synergisms between the phenolic compounds present in the extracts highlight the use of phytochemicals as future health promoters. However, further studies are necessary to understand the effective mode of action of individual phenolic constituents as also the existence of polyvalence relationships between them.
Resumo:
The antioxidant potential of mushrooms is mainly attributed to their composition in polysaccharides, phenolic compounds, tocopherols and some organic acids [1]. Phenolic compounds contribute directly to the antioxidative action and play an important role in stabilizing lipid peroxidation [2]; exhibit a wide range of bioactive properties such as anti-allergenic, anti-inflammatory and antimicrobial, which have been in part related to their antioxidant activity [3]. Tocopherols are important fatsoluble antioxidants, acting in the cellular membrane; due to their role as scavenger of free radicals protecting human cells against degenerative malfunctions [4]. Some organic acids are very common in natural matrices; malic acid contributes to a pleasantly sour taste and is often used as a food additive; citric acid is known due to its antibacterial and antioxidant properties and fumaric acid is important because of its antioxidant, anti-inflammatory, antimicrobial and acidifying properties [5]. The purpose of the present study was to analyze antioxidant and related compounds (phenolic compounds, tocopherols and organic acids) of Polyporus squamosus (Huds.) Fr. samples originated from two different origins (Portugal and Serbia). Specimens of P. squamosus were collected in Bragança (Northeast Portugal) and Jabučki rit (Northern Serbia) during April 2015 and 2012, respectively. Phenolic compounds, organic acids and tocopherols were determined by high performance liquid chromatograph (HPLC) coupled to a diode array detector (DAD), in the two first cases, and a fluorescence detector in the last one. With respect to phenolic and related compounds, p-hydroxybenzoic and cinnamic acids were identified in both samples; the first one predominates in the sample from Portugal, while cinnamic acid was more abundant in the sample from Serbia. Tocopherols (α-, β and γ-isoforms) were found in the sample from Serbia, but in the sample from Portugal, γ-tocopherol was not identified. This sample showed the highest total tocopherols content, and revealed the highest level of β-tocopherol; γ- tocopherol predominated in the sample from Serbia. Among organic acids, it was possible to quantify oxalic, malic and fumaric acids in both samples. Malic acid was found in higher amounts in the sample from Serbia. Overall, the present study shows that mushroom samples from different origins have dissimilar results, but are both rich in bioactive compounds, being a valuable source for the development of natural medicines and nutraceuticals.
Resumo:
After harvest, plants remain living organisms with the capacity to carry out metabolic processes. Thus, from the moment they are detached from the source of nutrients, they become entirely dependent on their own organic reserves [1]. Postharvest changes cannot be stopped, but they can be slowed within certain limits. Therefore, this study was conducted to evaluate the effects induced by storage in the profiles of sugars, organic acids and tocopherols of two leafy vegetables. Wild samples of watercress (Nasturtium officinale R. Br.) and buckler sorrel (Rumex induratus Boiss. & Reut.), from the Northeastern region of Portugal, were analyzed after harvest (control) and after storage in sterilized packages (using the passive modification mode) at 4ºC for 7 or 12 days, respectively. Analyses were performed by high-performance liquid chromatography (HPLC) using different detectors, i.e., a refraction index detector (RID) for free sugars, a photodiode array detector (PDA) for organic acids, and a fluorescence (FP) detector for tocopherols. The storage time decreased the levels of fructose, glucose and total sugars in both leafy vegetables and increased the total organic acids content. The decrease of these sugars can be related to its use by the plant to produce the required energy. Ascorbic acid was detected in buckler sorrel and decreased with storage; while the amount of malic acid increased in both species. Curiously, all the tocopherol isoforms increased in watercress, while buckler sorrel just present higher values of γ- and δ- tocopherols. In fact, the de novo synthesis of these bioactives compounds can be a plant strategy to fight against the reactive species that are produced during storage. The knowledge of the behavior of these compounds during storage that was achieved with this study [2] may contribute to the development of more effective preservation strategies for leafy vegetables.