1 resultado para Multiobjective Evolutionary Algorithm
em Instituto Politécnico de Bragança
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- Archive of European Integration (1)
- Aston University Research Archive (7)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (71)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (2)
- Brock University, Canada (16)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CentAUR: Central Archive University of Reading - UK (213)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (17)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (89)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (31)
- DRUM (Digital Repository at the University of Maryland) (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (55)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (4)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (15)
- Publishing Network for Geoscientific & Environmental Data (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (26)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (37)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (16)
- School of Medicine, Washington University, United States (4)
- Scielo Saúde Pública - SP (23)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (20)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (15)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universitat de Girona, Spain (9)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Lausanne, Switzerland (134)
- Université de Montréal, Canada (10)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (70)
Resumo:
Evolutionary-based algorithms play an important role in finding solutions to many problems that are not solved by classical methods, and particularly so for those cases where solutions lie within extreme non-convex multidimensional spaces. The intrinsic parallel structure of evolutionary algorithms are amenable to the simultaneous testing of multiple solutions; this has proved essential to the circumvention of local optima, and such robustness comes with high computational overhead, though custom digital processor use may reduce this cost. This paper presents a new implementation of an old, and almost forgotten, evolutionary algorithm: the population-based incremental learning method. We show that the structure of this algorithm is well suited to implementation within programmable logic, as compared with contemporary genetic algorithms. Further, the inherent concurrency of our FPGA implementation facilitates the integration and testing of micro-populations.