2 resultados para Modifications
em Instituto Politécnico de Bragança
Resumo:
Research clearly shows that physical activity (PA) is an important factor to develop and maintain good health and adequate body functions in older people. In this context, the purpose of this study was to determine aerobic performance and morphological modifications after a 4 month physical activity program (PAP) in elderly. METHODS Forty subjects divided in two groups (control, n=20; and experimental, n=20) were evaluated twice, at the beginning and after a 4-month-activity program period. This program called “+ age + health” consists of 3 week sessions of one hour each, based on walking and aerobic exercises. The control group had, at its first evaluation, the followings characteristics: average body mass 68kg±15, 28±5 BMI, 37%±5 body fat, 2.2kg±0.4 bone mass, 42%±9 lean body mass and did 129 repetitions ± 46 on a 2-Minute Step Test (2MST). The assessment of anthropometric and morphological variables was measured through an electrical bioimpedance scale (TANITA - BC 545). Aerobic endurance was evaluated from a 2MST.RESULTS In the control group only the percentage of body fat changed significantly, and increased over time. In the experimental group we found a positive relationship between PAP and the majority of morphological variables. The percentage of variation changed in: body fat (-4.3%±7.6, p=0.014), bone mass (2.4%±3.1, p=0.004) and 2MST (33.6%±63.1, p=0.023). In the remaining variables there were no significant modifications. The significant modification in 2MST after the activity period means that the aerobic performance can be improved in elderly, and attenuates the negative effects of age. Moreover, the benefits of PAP can be seen by positive alterations registered in lean body mass and in the percentage of body fat.
Resumo:
Among the wide variety of materials employed in the manufacture of shoes, thermoplastic polyurethanes (TPUs) are one of the most widely used. Given its widespread use, and associated waste management problems, the development of more biodegradable and evironmentally compatible solutions is needed. In this work, a polyester-based TPU used in the footwear industry for outsoles production was modified by compounding with lignin, starch and cellulose at content of 4% (w/w). The biodegradability was evaluated by using agar plate tests with the fungi Aspergillus niger ATCC16404, the Gram-negative bacteria Pseudomonas aeruginosa ATCC9027 and an association of both (consortium), and soil tests at 37 °C and 58 °C. The obtained results evidenced a positive effect of the tested biobased additives, the most favourable results being registered with lignin. These results were corroborated by the structural modifications observed by FTIR analysis. Additionally, mechanical tests prove the suitability of using the lignin modified TPUs for footwear outsoles production.