2 resultados para Minorities in medicine
em Instituto Politécnico de Bragança
Resumo:
Natural resources like plants are currently used all over developed and under developed countries of the world as traditional home remedies and are promising agents for drug discovery as they play crucial role in traditional medicine. The use of plants for medicinal purpose usually varies from country to country and region to region because their use depends on the history, culture, philosophy and personal attitudes of the users (Ahmad et al., 2015). The use of plants and plant products as drugs predates the written human history (Hayta et al., 2014). Plants are a very important resource for traditional drugs and around 80% of the population of the planet use plants for the treatment of many diseases and traditional herbal medicine accounts for 30-50% of the total medicinal consumption in China. In North America, Europe and other well-developed regions over 50% of the population have used traditional preparations at least once (Dos Santos Reinaldo et al., 2015). Medicinal plants have been used over years for multiple purposes, and have increasingly attract the interest of researchers in order to evaluate their contribution to health maintenance and disease’s prevention (Murray, 2004). Recently between 50,000 and 70,000 species of plants are known and are being used in the development of modern drugs. Plants were the main therapeutic agents used by humans from the 19th century, and their role in medicine is always topical (Hayta et al., 2014). The studies of medicinal plants are rapidly increasing due to the search for new active molecules, and to improve the production of plants or bioactive molecules for the pharmaceutical industries (Rates, 2001). Several studies have been reported, but numerous active compounds directly responsible for the observed bioactive properties remain unknown, while in other cases the mechanism of action is not fully understood. According to the WHO 25% of all modern medicines including both western and traditional medicine have been extracted from plants, while 75% of new drugs against infective diseases that have arrived between 1981 and 2002 originated from natural sources, it was reported that the world market for herbal medicines stood at over US $60 billion per year and is growing steadily (Bedoya et al., 2009). Traditional medicine has an important economic impact in the 21st century as it is used worldwide, taking advantage on the low cost, accessibility, flexibility and diversity of medicinal plants (Balunas & Kinghorn, 2005).
Resumo:
The biochemistry of cheese ripening involves mechanisms such as glycolysis, proteolysis and lipolysis. Fatty acids are released by the action of lipases from different sources, milk, rennet, bacteria, moulds included as secondary starters, and other exogenous lipases, during lipolysis [1]. The composition of the lipid fraction contributes positively to the flavour of cheese, for being precursors of more complex aroma compounds responsible for the characteristic “goaty flavour” of goat cheeses [2]. Goat milk is recognized by its easier digestibility, alkalinity, buffering capacity and certain therapeutic values in medicine and human nutrition [3]. A high total content of fatty acids is strongly linked to a rancid and tart off flavour in goat milk and may be considered undesirable in most cheese varieties [4]. In this sense, the purpose of the present study was to examine the composition and changes in fatty acids and saponification value of goat cheese during curing period (2, 7 and 12 months). Goat cheese was made in industrial unit of Cachão - Mirandela (Trás-os- Montes) with raw milk Serrana goats’ race, salt and rennet from animal origin. During the first two months, the samples were stored in a ripening chamber (9.5-11 °C and RH 75-85%). From the second month to one year, the samples were stored in a preservation chamber (10.5-12 °C and RH 75-85%). The fatty acids profile of the inner part of the cheese was analyzed by gas-chromatography coupled to flame ionization detection (GC-FID). The degree of saponification was determined both in the crust and inside the cheese by HCl titration of ethanol KOH solution of the samples. Twenty-six fatty acids (FA) were identified and quantified in the inner part of the cheese (total fat was 45-46 g/100 g during the curing period). Saturated fatty acids (SFA) did not change up to 7 months of curing, increasing only after 12 months, being palmitic (C16:0), stearic (C18:0), myristic (C14:0) and capric (C10:0) acids the most abundant FA in this class. Monounsaturated fatty acids (MUFA) decreased only after 12 months, and oleic acid (C18:1) was the predominant FA. In polyunsaturated fatty acids (PUFA) class, the most abundant were linoleic (C18:2) and linolenic (C18:3) acids, and followed the same tendency of MUFA. This is corroborated by an increase in the degree of saponification, either in the crust as in the inner part of the cheese, after 12 months of curing, probably related with the saturation of the fatty acids [3]. Extra-long curing can be done in cheeses produced with goat milk up to seven months of storage without changing the total fat and individual FA content.