2 resultados para Mean Absolute Scaled Error (MASE)
em Instituto Politécnico de Bragança
Resumo:
In this chapter four combinations of input features and the feedforward, cascade forward and recurrent architectures are compared for the task of forecast tourism time series. The input features of the ANNs consist in the combination of the previous 12 months, the index time modeled by two nodes used to the year and month and one input with the daily hours of sunshine (insolation duration). The index time features associated to the previous twelve values of the time series proved its relevance in this forecast task. The insolation variable can improved results with some architectures, namely the cascade forward architecture. Finally, the experimented ANN models/architectures produced a mean absolute percentage error between 4 and 6%, proving the ability of the ANN models based to forecast this time series. Besides, the feedforward architecture behaved better considering validation and test sets, with 4.2% percentage error in test set.
Resumo:
This study is aimed to model and forecast the tourism demand for Mozambique for the period from January 2004 to December 2013 using artificial neural networks models. The number of overnight stays in Hotels was used as representative of the tourism demand. A set of independent variables were experimented in the input of the model, namely: Consumer Price Index, Gross Domestic Product and Exchange Rates, of the outbound tourism markets, South Africa, United State of America, Mozambique, Portugal and the United Kingdom. The best model achieved has 6.5% for Mean Absolute Percentage Error and 0.696 for Pearson correlation coefficient. A model like this with high accuracy of forecast is important for the economic agents to know the future growth of this activity sector, as it is important for stakeholders to provide products, services and infrastructures and for the hotels establishments to adequate its level of capacity to the tourism demand.