6 resultados para MQL with water
em Instituto Politécnico de Bragança
Resumo:
The knowledge of the liquid-liquid equilibria (LLE) between ionic liquids (ILs) and water is of utmost importance for environmental monitoring, process design and optimization. Therefore, in this work, the mutual solubilities with water, for the ILs combining the 1-methylimidazolium, [C(1)im](+); 1-ethylimidazolium, [C(2)im](+); 1-ethyl-3-propylimidazolium, [C(2)C(3)im](+); and 1-butyl-2,3-dimethylimidazolium, [C(4)C(1)C(1)im](+) cations with the bis(trifluoromethylsulfonyl)imide anion, were determined and compared with the isomers of the symmetric 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ([C(n)C(n)im][NTf2], with n=1-3) and of the asymmetric 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(n)C(1)im][NTf2], with n = 2-5) series of ILs. The results obtained provide a broad picture of the impact of the IL cation structural isomerism, including the number of alkyl side chains at the cation, on the water-IL mutual solubilities. Despite the hydrophobic behaviour associated to the [NTf2](-) anion, the results show a significant solubility of water in the IL-rich phase, while the solubility of ILs in the water-rich phase is much lower. The thermodynamic properties of solution indicate that the solubility of ILs in water is entropically driven and highly influenced by the cation size. Using the results obtained here in addition to literature data, a correlation between the solubility of [NTf2]-based ILs in water and their molar volume, for a large range of cations, is proposed. The COnductor like Screening MOdel for Real Solvents (COSMO-RS) was also used to estimate the LLE of the investigated systems and proved to be a useful predictive tool for the a priori screening of ILs aiming at finding suitable candidates before extensive experimental measurements.
Resumo:
Looking for a better knowledge concerning water and ionic liquids (ILs) interactions, a systematic study of the activity coefficients of water in pyridinium, pyrrolidinium and piperidinium-based ILs at 298.2 K is here presented based on water activity measurements. Additionally, the study of the structural effects of the pyridinium-based cation is also pursued. The results show that non-aromatic ILs are interacting more with water than aromatic ones, and among the ortho, meta and para isomers of 1-butyl-methylpyridinium chloride, the ortho position confers a more hydrophilic character to that specific IL. The physicalchemistry of the solutions was interpreted based on dissociation constants, natural bond orbitals and excess enthalpies providing a sound basis for the interpretation of the experimental observations. These results show that hydrogen bonding controls the behavior of these systems, being the anion-water one of the most relevant interactions, but modulated by the anionecation interactions.
Probing the interactions between ionic liquids and water: experimental and quantum chemical approach
Resumo:
For an adequate choice or design of ionic liquids, the knowledge of their interaction with other solutes and solvents is an essential feature for predicting the reactivity and selectivity of systems involving these compounds. In this work, the activity coefficient of water in several imidazolium-based ionic liquids with the common cation 1-butyl-3-methylimidazolium was measured at 298.2 K. To contribute to a deeper insight into the interaction between ionic liquids and water, COSMO-RS was used to predict the activity coefficient of water in the studied ionic liquids along with the excess enthalpies. The results showed good agreement between experimental and predicted activity coefficient of water in ionic liquids and that the interaction of water and ionic liquids was strongly influenced by the hydrogen bonding of the anion with water. Accordingly, the intensity of interaction of the anions with water can be ranked as the following: [CF3SO3](-) < [SCN](-) < [TFA](-) < Br(-) < [TOS](-) < Cl(-) < [CH3SO3](-) [DMP](-) < [Ac](-). In addition, fluorination and aromatization of anions are shown to reduce their interaction with water. The effect of temperature on the activity coefficient of water at infinite dilution was measured by inverse gas chromatography and predicted by COSMO-RS. Further analysis based on COSMO-RS provided information on the nature of hydrogen bonding between water and anion as well as the possibility of anion-water complex formation.
Resumo:
Ionic liquids (ILs) have attracted great attention, from both industry and academia, as alternative fluids for very different types of applications. The large number of cations and anions allow a wide range of physical and chemical characteristics to be designed. However, the exhaustive measurement of all these systems is impractical, thus requiring the use of a predictive model for their study. In this work, the predictive capability of the conductor-like screening model for real solvents (COSMO-RS), a model based on unimolecular quantum chemistry calculations, was evaluated for the prediction water activity coefficient at infinite dilution, gamma(infinity)(w), in several classes of ILs. A critical evaluation of the experimental and predicted data using COSMO-RS was carried out. The global average relative deviation was found to be 27.2%, indicating that the model presents a satisfactory prediction ability to estimate gamma(infinity)(w) in a broad range of ILs. The results also showed that the basicity of the ILs anions plays an important role in their interaction with water, and it considerably determines the enthalpic behavior of the binary mixtures composed by Its and water. Concerning the cation effect, it is possible to state that generally gamma(infinity)(w) increases with the cation size, but it is shown that the cation-anion interaction strength is also important and is strongly correlated to the anion ability to interact with water. The results here reported are relevant in the understanding of ILs-water interactions and the impact of the various structural features of its on the gamma(infinity)(w) as these allow the development of guidelines for the choice of the most suitable lLs with enhanced interaction with water.
Resumo:
Aiming at the evaluation of the impact of the ionic liquids (ILs) cation symmetry on their phase behaviour, in this work, novel mutual solubilities with water of the symmetric series of [C(n)C(n)im][NTf2] (with n=1-5) were determined and compared with their isomeric forms of the asymmetric [C(n)C(1)im][NTf2] group. While the solubility of isomeric ILs in water was found to be similar, the solubility of water in ILs follows the same trend up to a maximum cation alkyl side chain length. For n >= 4 in [C(n)C(n)im][NTf2] the solubility of water in the asymmetric ILs is slightly higher than that observed in the symmetric counterparts. The thermodynamic properties of solution and solvation derived from the experimental solubility data of ILs in water at infinite dilution, namely the Gibbs energy, enthalpy and entropy were used to evaluate the cation symmetry effect on the ILs solvation. It is shown that the solubility of ILs in water is entropically driven and highly influenced by the cation size. Accordingly, it was found that the ILs solubility in water of both symmetric and asymmetric series depends on their molecular volume. Based on these findings, a linear correlation between the logarithm of the solubility of ILs in water and their molar volume is here proposed for the [NTf2]-based ILs at a fixed temperature.
Resumo:
A systematic study of the interactions between water and alkyl methyl imidazolium chloride ionic liquids at 298.2 K, based on activity coefficients estimated from water activity measurements in the entire solubility range, is presented. The results show that the activity coefficients of water in the studied ILs are controlled by the hydrophilicity of the cation and the cation-anion interaction. To achieve a deeper understanding on the interactions between water and the ILs, COSMO-RS and FTIR spectroscopy were also applied. COSMO-RS was used to predict the activity coefficient of water in the studied ionic liquids along with the excess enthalpies, suggesting the formation of complexes between three molecules of water and one IL molecule. On the basis of quantum-chemical calculations, it is found that cation-anion interaction plays an important role upon the ability of the IL anion to interact with water. The changes in the peak positions/band areas of OH vibrational modes of water as a function of IL concentration were investigated, and the impact of the cation on the hydrogen-bonding network of water is identified and discussed.