4 resultados para Ionic Liquid. tetrafluoroborate. 1-methylimidazole. hydrogen production

em Instituto Politécnico de Bragança


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodiesel is an alternative diesel fuel that is produced from vegetable oils and animal fats. Currently, most biodiesel is made from oils, methanol, and an alkaline catalyst. Conventional catalysts is commonly used for catalyzing esterification of fatty acid to produce biodiesel. However, a better and greener method was found. An ionic liquid (IL) is a molten salt consisting of a cation and an anion, with low melting temperature. It offers a better solution than sulfuric acid, because it can be recycled and reused in subsequent runs after recovery steps. In this study, a Brønsted acidic IL, 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM][HSO4]) was used as a catalyst in the esterification of oleic acid with methanol into biodiesel. The effect of different operation parameters such as methanol to oil molar ratio, amount of catalyst, reaction temperature, and reaction time were tested. The optimum conditions for esterification of oleic acid were identified as oleic acid/methanol molar ratio of 1/10, amount of catalyst 10 wt%, reaction time of 4 h, and reaction temperature of 90oC. FAME content of produced biodiesel was analyzed and confirmed using GC chromatography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vapor liquid-equilibrium of water + ionic liquids is relevant for a wide range of applications of these compounds. It is usually measured by ebulliometric techniques, but these are time consuming and expensive. In this work it is shown that the activity coefficients of water in a series of cholinium-based ionic liquids can be reliably and quickly estimated at 298.15K using a humidity meter instrument. The cholinium based ionic liquids were chosen to test this experimental methodology since data for water activities of quaternary ammonium salts are available in the literature allowing the validation of the proposed technique. The COSMO-RS method provides a reliable description of the data and was also used to understand the molecular interactions occurring on these binary systems. The estimated excess enthalpies indicate that hydrogen bonding between water and ionic liquid anion is the dominant interaction that governs the behavior of water and cholinium-based ionic liquids systems, while the electrostatic-misfit and van der Walls forces have a minor contribution to the total excess enthalpies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, ionic liquids are evaluated for the first time as solvents for extraction and entrainers in separation processes involving terpenes and terpenoids. For that purpose, activity coefficients at infinite dilution, γ13 ∞, of terpenes and terpenoids, in the ionic liquids [C4mim]Cl, [C4mim][CH3SO3], [C4mim][(CH3)2PO4] and [C4mim][CF3SO3] were determined by gas−liquid chromatography at six temperatures in the range 398.15 to 448.15 K. On the basis of the experimental values, a correlation of γ13 ∞ with an increase of the solubility parameters is proposed. The infinite dilution thermodynamic functions were calculated showing the entropic effect is dominant over the enthalpic. Gas−liquid partition coefficients give indications about the recovery and purification of terpenes and terpenoids from ionic liquid solutions. Presenting a strong innovative character, COSMO-RS was evaluated for the description of the selectivities and capacities, showing to be a useful tool for the screening of ionic liquids in order to find suitable candidates for terpenes and terpenoids extraction, and separation. COSMO-RS predictions show that in order to achieve the maximum separation efficiency, polar anions should be used such as bis(2,4,4-trimethylpentyl)phosphinate or acetate, whereas high capacities require nonpolar cations such as phosphonium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is scientific evidence demonstrating the benefits of mushrooms ingestion due to their richness in bioactive compounds such as mycosterols, in particular ergosterol [I]. Agaricus bisporus L. is the most consumed mushroom worldwide presenting 90% of ergosterol in its sterol fraction [2]. Thus, it is an interesting matrix to obtain ergosterol, a molecule with a high commercial value. According to literature, ergosterol concentration can vary between 3 to 9 mg per g of dried mushroom. Nowadays, traditional methods such as maceration and Soxhlet extraction are being replaced by emerging methodologies such as ultrasound (UAE) and microwave assisted extraction (MAE) in order to decrease the used solvent amount, extraction time and, of course, increasing the extraction yield [2]. In the present work, A. bisporus was extracted varying several parameters relevant to UAE and MAE: UAE: solvent type (hexane and ethanol), ultrasound amplitude (50 - 100 %) and sonication time (5 min-15 min); MAE: solvent was fixed as ethanol, time (0-20 min), temperature (60-210 •c) and solid-liquid ratio (1-20 g!L). Moreover, in order to decrease the process complexity, the pertinence to apply a saponification step was evaluated. Response surface methodology was applied to generate mathematical models which allow maximizing and optimizing the response variables that influence the extraction of ergosterol. Concerning the UAE, ethanol proved to be the best solvent to achieve higher levels of ergosterol (671.5 ± 0.5 mg/100 g dw, at 75% amplitude for 15 min), once hexane was only able to extract 152.2 ± 0.2 mg/100 g dw, in the same conditions. Nevertheless, the hexane extract showed higher purity (11%) when compared with the ethanol counterpart ( 4% ). Furthermore, in the case of the ethanolic extract, the saponification step increased its purity to 21%, while for the hexane extract the purity was similar; in fact, hexane presents higher selectivity for the lipophilic compounds comparatively with ethanol. Regarding the MAE technique, the results showed that the optimal conditions (19 ± 3 min, 133 ± 12 •c and 1.6 ± 0.5 g!L) allowed higher ergosterol extraction levels (556 ± 26 mg/100 g dw). The values obtained with MAE are close to the ones obtained with conventional Soxhlet extraction (676 ± 3 mg/100 g dw) and UAE. Overall, UAE and MAE proved to he efficient technologies to maximize ergosterol extraction yields.