15 resultados para HPLC-LTQ-Orbitrap-MS
em Instituto Politécnico de Bragança
Resumo:
Naturally-occurring phytochemicals have received a pivotal attention in the last years, due to the increasing evidences of biological activities. Equisetum giganteum L., commonly known as “giant horsetail”, is a native plant from Central and South America, being largely used in dietary supplements as diuretic, hemostatic, antiinflammatory and anti-rheumatic agents [1,2]. The aim of the present study was to evaluate the antioxidant (scavenging effects on 2,2-diphenyl-1-picrylhydrazyl radicals- RSA, reducing power- RP, β-carotene bleaching inhibition- CBI and lipid peroxidation inhibition- LPI), anti-inflammatory (inhibition of NO production in lipopolysaccharidestimulated RAW 264.7 macrophages) and cytotoxic (in a panel of four human tumor cell lines: MCF-7- breast adenocarcinoma, NCI-H460- non-small cell lung cancer, HeLa- cervical carcinoma and HepG2- hepatocellular carcinoma; and in non-tumor porcine liver primary cells- PLP2) properties of E. giganteum, providing a phytochemical characterization of its extract (ethanol/water, 80:20, v/v), by using highperformance liquid chromatography coupled to diode array detection and electrospray ionisation mass spectrometry (HPLC-DAD–ESI/MS). E. giganteum presented fourteen phenolic compounds, two phenolic acids and twelve flavonol glycoside derivatives, mainly kaempferol derivatives, accounting to 81% of the total phenolic content, being kaempferol-O-glucoside-O-rutinoside, the most abundant molecule (7.6 mg/g extract). The extract exhibited antioxidant (EC50 values = 123, 136, 202 and 57.4 μg/mL for RSA, RP, CBI and LPI, respectively), anti-inflammatory (EC50 value = 239 μg/mL) and cytotoxic (GI50 values = 250, 258, 268 and 239 μg/mL for MCF-7, NCI-H460, HeLa and HepG2, respectively) properties, which were positively correlated with its concentration in phenolic compounds. Furthermore, up to 400 μg/mL, it did not revealed toxicity in non-tumor liver cells. Thus, this study highlights the potential of E. giganteum extracts as rich sources of phenolic compounds that can be used in the food, pharmaceutical and cosmetic fields.
Resumo:
Cynara scolymus L. (artichoke) and Silybum marianum (L.) Gaertn. (milk thistle) are medicinal plants native to the Mediterranean Basin that belong to the Asteraceae family. The flowers and leaves of milk thistle are used in the treatment of liver, spleen and gallbladder disorders [1] and artichoke leaves are used for their cholagogue, choleretic and choliokinetic actions, and also for treatment of dyspepsia and as antidiabetics [2]. The beneficial properties of medicinal plants can be related to their large diversity of phytochemicals, among which phenolic compounds are outstanding. Thereby, the aim of the present work was to obtain and compare the phenolic profiles of artichoke and milk thistle aqueous (prepared by infusion) and hydromethanolic (maceration in methanol: water 80:20, v/v) extracts, using HPLC-DAD-ESI/MS. The aqueous extract of artichoke presented higher concentration in total phenolic compounds (15.29 mg/g extract) than the hydromethanolic extract (4.37 mg/g) with slight differences between the respective profiles; the major flavonoid found in the aqueous and hydromethanolic extract was luteolin-7-O-glucuronide (5.64 and 0.70 mg/g, respectively), followed by luteolin-7-O-glucoside (2.88 and 0.49 mg/g, respectively). Monocaffeoylquinic acid derivatives were only present in the hydromethanolic extract, being 5-O-caffeoylquinic acid (0.49 mg/g) the most abundant one, while dicaffeoylquinic acid derivatives were mostly identified in the aqueous extract; 1,3-O-dicaffeoylquinic acid was the most abundant one in both extracts (0.90 and 0.37 mg/g in the aqueous and hydromethanolic extract, respectively). Regarding to milk thistle preparations, similar phenolic profiles were observed, with only quantitative differences between them. The aqueous extract revealed a higher phenolic compounds concentration (5.57 mg/g) than the hydromethanolic extract (3.56 mg/g), with apigenin-7-O-glucuronide as the major compound in both preparations (3.14 mg/g in the aqueous extract, and 0.58 mg/g in the hydromethanolic extract). Total flavonoids were higher in the aqueous extract (4.66 mg/g), with apigenin-7-Oglucuronide, luteolin-7-O-glucuronide (1.17 mg/g), and apigenin-O-deoxyhexosylglucuronide (0.36 mg/g) as the main constituents. The phenolic acids found in the hydromethanolic extract (total content 1.65 mg/g), included 5-O-caffeolyquinic and protocatechuic acids (0.56 and 0.44 mg/g, respectively). Besides these phenolic acids, the hydromethanolic extract also revealed high levels of luteolin-7-O-glucuronide (0.58 mg/g). Overall, aqueous extracts presented higher phenolic contents than their hydromethanolic extracts in both species, which could be related with the heat treatment to which infusions were subjected.
Resumo:
The Asteraceae family is spread worldwide. In Portugal, there are more than 300 species, standing out as one of the botanical families with largest representation in the Portuguese flora. Coleostephus myconis (L.) Rchb.f. is a scarcely studied Asteraceae species, characterized as having ruderal growth and persistence in abandoned soils (an expanding problem due to the desertification phenomena in rural areas). In this work, the flowers of C. myconis were collected in three different flowering stages (i: flower bud; ii: flower in anthesis; iii: senescent flower) from the Northwestern area of the Portuguese territory. Powdered samples (1 g) were extracted twice with ethanol:water 50:50 (v/v). After removing solvents, the combined extracts were re-dissolved, filtered through 0.22-μm disposable LC filter disks and analyzed by high performance liquid chromatography coupled to a diode array detector and electrospray ionization-mass spectrometry (HPLC-DAD/ESI-MS). The phenolic compounds were characterized according to their UV and mass spectra, and retention times. For the quantitative analysis, calibration curves of standard compounds were used. According to the UV spectra (λmax = 314-330 nm) and pseudomolecular ions ([M-H]-) at m/z 353 and 515, all producing an m/z 191 ion, four compounds derived from quinic acid were detected: 3-O-caffeoylquinic acid (Figure 1A), 5-O-caffeoylquinic acid (Figure 1B), 3,5-O-dicaffeoylquinic acid (Figure 1C) and 4,5-O-dicaffeoylquinic acid (Figure 1D), as also supported by the literature [1,2]. A fifth phenolic acid was identified as protocatechuic acid. The detected flavonoid were quercetin-O-glucuronide, quercetin-3-Oglucoside, myricetin-O-methyl-hexoside and a second glycosylated myricetin (not possible to identify completely). Some statistically significant changes were detected among the different assayed flowering stages; nevertheless, 3,5-O-dicaffeoylquinic acid was the major compound, independently of the phenologic stage. According to the previous results, C. myconis might be considered as a potential natural source of these valuable bioactive compounds, especially considering the high botanical representativeness of this plant and its inexpensiveness.
Resumo:
Tomato (Lycopersicon esculentum L.) is the second most important vegetable crop worldwide and a key component in the so-called “Mediterranean diet”. In the Northeastern region of Portugal, local populations still prefer to consume traditional tomato varieties which they find very tasty and healthy, as they are grown using extensive farming techniques. A previous study of our research team described the nutritional value of the round (batateiro), long (comprido), heart (coração) and yellow (amarelo) tomato varieties [1], but the phenolic profile was unknown until now. Thus, the objective of this study was to characterize the phenolic profiles of these four tomato farmers’ varieties by using HPLC-DAD-ESI/MS and evaluate its antioxidant capacity through four in vitro assays based on different reaction mechanisms. A cis p-coumaric acid derivative was the most abundant compound in yellow and round tomato varieties, while 4-O-caffeolyquinic acid was the most abundant in long and heart varieties. The most abundant flavonoid was quercetin pentosylrutinoside in the four tomato varieties. Yellow tomato presented the highest levels of phenolic compounds, including phenolic acids and flavonoids, but the lowest antioxidant activity. In turn, the round tomato gave the best results in all the antioxidant activity assays. This study demonstrated that these tomato farmers’ varieties are a source of phenolic compounds, mainly phenolic acid derivatives [2], and possess high antioxidant capacity [1]; being thus key elements in the diet to prevent chronic degenerative diseases associated to oxidative stress, such as cancer and coronary artery disease.
Resumo:
A perceção, as opiniões e os desejos dos consumidores têm um enorme impacto na indústria alimentar. Na perceção visual, a cor torna-se um fator fundamental e, neste campo, os corantes alimentares assumem uma extrema importância. A cor pode ser considerada um dos atributos mais impressionantes dos géneros alimentícios, que influencia diretamente a preferência e a seleção dos consumidores[1]. Existem muitos corantes naturais utilizados na indústria alimentar, tais como carotenóides, antocianinas e betalaínas. As betalaínas incluem compostos com cores que vão do vermelho-violeta (betacianidinas) ao amarelo-laranja (betaxantinas). As betalaínas não têm sido tão extensamente estudadas como as antocianinas, mas possuem uma capacidade corante três-vezes maior. A única betalaína autorizada como corante natural deriva da beterraba(E-162)[2], mas existem outras fontes alternativas de betacianidinas ,como a que se apresenta neste trabalho: Gomphrenaglobosa L., vulgarmente designada por perpétua roxa.
Resumo:
The demand for natural sweeteners has been gaining more and more importance due to the great controversy associated with the use of some synthetic sweeteners as cyclamates, aspartame and acesulfame-K. The steviol glycosides (E 960) are a group of natural sweeteners of generalized use; these compounds are obtained from Stevia rebaudiana Bertoni, a sweet plant native from South America (Carocho et al., 2015). However, Stevia rebaudiana Bertoni may have other uses to be exploited, in particular due to its antioxidant capacity. This plant is already produced in Portugal but it is important to evaluate if the plant chemical composition is maintained regardless of culture conditions. Therefore, in this study, stevia samples were cultivated in Braganca (northeastern of Portugal) in a field trial with defined culture conditions. After harvesting, the plants were submitted to two different treatments: kept fresh by freezing (-20°C) and oven-dried (30°C). The antioxidant profile of the samples was studied through evaluation of free radicals scavenging activity, reducing power, phenolic compounds (HPLC-DAD-ESI/MS), tocopherols (HPLC-fluorescence) and free sugars (HPLC-RI). Significant differences were observed: while oven-dried samples showed the highest antioxidant activity and phenolic compounds concentration (mainly 5-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid), the frozen fresh samples had the highest values of total tocopherols and total sugars. These results confirm that the plants grown in Bragança have excellent bioactive secondary metabolites responsible for the observed antioxidant capacity.
Resumo:
Cork boiling water is an aqueous and complex dark liquor with high concentration of phenolic compounds such as phenolic acids and tannins [1, 2], which are considered biorecalcitrants [2]. Ionizing radiation has been widely studied as an alternative technology for the degradation of organic contaminants without the addition of any other (e.g.: Fenton technologies). The aim of this work was to identify the compounds present in cork boiling water and further evaluate the resulting stable degradation products after gamma irradiation. The irradiation experiments of standard solutions were carried out at room temperature using a Co-60 experimental equipment. The applied absorbed doses were 20 and 50 kGy at a dose rate of 1.5 kGy/h, determined by routine dosimeters [3]. The identification of radiolytic products was carried out by HPLC-DAD-ESI/MS. The phenolic compounds were identified by comparing their retention times and UV–vis and mass spectra with those obtained from standard compounds, when available, as well as by comparing the obtained information with available data reported in the literature. Concerning the obtained results and the literature review, the main cork wastewater components are: quinic, gallic, protocatechuic, vanillic, syringic and ellagic acids. Based on this, we used protocatechuic, vanillic and syringic acids as model compounds to study their degradation by gamma radiation in order to identify the corresponding radiolytic products. Standard aqueous solutions were irradiated and the derivatives of each model compound are represented in figure 1. The obtained results seem to demonstrate that the derivatives of the parent compounds could also be phenolic acids, since it was observed the loss of 44 u (CO2) from the [M-H]- ions. Gallic and protocatechuic acids are identified as derivatives of vanillic and syringic acids, and gallic acid as a protocatechuic acid derivative. Compound 5 ([M-H]- at m/z 169) was tentatively identified as 2,4,6-trihydroxybenzoic acid, since its fragmentation pattern (m/z 151, 125 and 107) is similar to that previously reported in literature [4]. The structure of compound 7 was proposed based on the molecular ion and its fragmentation and compound 6 remains unknown.
Resumo:
Angiogenesis is a biological process through which there is the formation of new blood vessels from preexisting ones [I]. However, in pathological cases, the abnormal growth of new blood vessels promotes the development of various diseases including cancer [2) through the production of atypically large amounts of angiogenesis factors, e.g. the vascular endothelial growth factor (VEGF) [3]. The plant secondary metabolites have been the subject of several studies to evaluate their benefits to human health. In particular, the phenolic compounds have high potential for use in the food industry, including the development of functional foods. Among these, apigenin has been associated with chemopreventive effects related to cancer [4]. In fact, chemoprevention is a present-day concept and contemplates the use of medicines, biological compounds or nutrients as an intervention strategy of cancer prevention. In this work, an Arenaria montana L hydroethanolic extract was prepared and after characterization by HPLC-DAD-ESI/MS showed to be rich in apigenin derivatives. Furthermore, it exhibited ability to inhibit the phosphorylation of VEGFR-2 (vascular endothelium growth factor receptor) through an enzymatic assay. However, for the major protection of bioactive compounds, the extract was microencapsulated by an atomization/coagulation technique with alginate as the matrix material. Posteriorly, the hydroethanolic extract, in free and microencapsulated forms, was incorporated in yogurts in order to develop a novel chemopreventer food in relation to the angiogenesis process. The functionalized yogurts with A. montana extracts (free and microencapsulated) showed a nutritional value similar to the used control (yogurt without extract); however, the samples enriched with extracts revealed added-value regarding the VEGFR-2 phosphorylation inhibition ability. This effect was more effectively preserved over time in the samples functionalized with the protected extract. Overall, this work contributes to the valorization of plants rich in flavonoids, exploring its antiangiogenic potential with VEGFR-2 as target. Moreover, the atomization/coagulation technique allowed the production of viable microspheres enriched with the plant extract. The microspheres were effectively incorporated into yogurts, protecting the extract thus envisaging the development of novel functional foods with chemopreventive effects.
Resumo:
Wild strawberry, Fragaria vesca L., belongs to Rosaceae family and is commonly found in roadsides and slopes [1]. The most consumed parts of this plant are its sweet small fruits, which constitute a source of vitamins and phenolic compounds, being also used in infusions due to their organoleptic properties and for the treatment of some intestinal disorders [2, 3]. In the present work, F. vesca fruits were evaluated for their nutritional value and further used in the preparation of infusions. The chemical composition of the fruits and corresponding infusions was determined in terms of soluble sugars, organic acids, tocopherols, folates (by HPLC coupled to different detectors), phenolic compounds (by HPLC-DAD/ESI-MS) and mineral elements (atomic absorption spectroscopy). Some of these bioactive compounds were correlated with antioxidant and antibacterial properties evaluated either in infusions as also in hydromethanolic extracts. Carbohydrates were the main macronutrients in the fruits, followed by fat and proteins. Regarding the fatty acids, polyunsaturated fatty acids showed higher prevalence, mainly due to the presence of D-linolenic (Cl8:3n3) and y-linolenic (Cl8:3n6) acids. Sucrose and citric acid were, respectively, the main sugar and organic acid found in the fruits and in its infusions. The microelement found in higher amounts in both samples was manganese, while potassium and calcium were the macroelements present in higher levels in the fruits and infusions, respectively. Both samples presented folates and tocopherols, being ytocopherol the main isoform detected in the fruits, while a-tocopherol was the only isoform quantified in the infusion. The hydromethanolic extract prepared from the fruits gave higher antioxidant and antibacterial activities, namely against Escherichia coli and Pseudomonas aeruginosa, than the infusion; it also showed capacity to inhibit the formation of bacterial biofilm. Both bioactivities are highly correlated with the presence of phenolic compounds, in which the major are ellagic acid derivatives (sanguiin hlO) followed by tlavan 3-ols ((+)catechin) and anthocyanin compounds (pelargonidin-3-glucoside). Although fruits of wild F. vesca are mainly consumed in fresh, this study also proves the potentiality of their infusions as a source of bioactive molecules and properties.
Resumo:
Irradiation has been increasingly recognized as an effective decontamination technique, also ensuring the chemical and organoleptic quality of medicinal and aromatic plants 1 . The use of medicinal plants in the prevention and or treatment of several diseases has revealed satisfactory results as anti-inflammatory, antimutagenic, anti-cancer and antioxidant agents 2 . The aim of the present study was to evaluate the effects of gamma irradiation on the cytotoxic properties and phenolic composition of Thymus vulgaris L. and Menta x piperita L. (methanolic extracts). Phenolic compounds were analyzed by HPLC-DAD-ESI MS, while the cytotoxicity of the samples was assessed in MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), HeLa (cervical carcinoma), HepG2 (hepatocellular carcinoma) cell lines, as also in non-tumor cells (PLP2). Thirteen and fourteen phenolic compounds were detected in T. vulgaris and M. piperita, respectively, but none of them was affected by the irradiation up to a dose of 10 kGy. However, despite there were no changes in the cytotoxic properties of irradiated peppermint samples in tumor cell lines, the thyme samples irradiated with 10 kGy showed higher cytotoxicity in comparison with the samples submitted to other doses (2 and 5 kGy). This highlights that 10 kGy can be a suitable dose to ensure the sanitary treatment, without modifying the bioactive composition and properties of these aromatic plants.
Resumo:
Atualmente, existe uma grande procura de alimentos com ingredientes naturais em substituição de aditivos sintéticos que têm sido associados, em determinadas circunstâncias, a alguns efeitos tóxicos [1]. Neste trabalho, preparou-se um extrato aquoso por decocção de Foeniculum vulgare Mill. (funcho) que, após caracterização por HPLC-DAD-ESI/MS, revelou a presença de cinco flavonoides (sendo o maioritário o quercetin-3-O-glucósido) e doze ácidos fenólicos (sendo o maioritário o ácido 5-Ocafeoilquínico). O mesmo extrato revelou um enorme potencial antioxidante (efeito captador de radicais livres DPPH, poder redutor e inibição da peroxidação lipídica) e antimicrobiano (contra bactérias como Salmonella typhimurium e Bacillus cereus, e fungos como Aspergillus niger, A. versicolor e Penicillium funiculosum), o que suscitou o seu potencial de utilização como ingrediente bioativo na funcionalização de alimentos. Assim, procedeu-se à sua incorporação (atendendo ao EC25 =0,35 mg/mL obtido no ensaio de DPPH) em requeijões (preparados na empresa Queijos Casa Matias Lda.). Os resultados mostraram que a presença do extrato não alterou significativamente as características nutricionais (incluindo macronutrientes, valor energético e perfil em ácidos gordos) das amostras controlo (requeijão sem esse ingrediente), no entanto parece aumentar o amarelecimento (parâmetro da cor, b*) após 7 dias de armazenamento. Verificou-se ainda que, após duas semanas de armazenamento apenas as amostras controlo apresentaram sinais de degradação. Além disso, conseguiu-se provar que a incorporação do extrato de funcho conferiu propriedades antioxidantes ao requeijão. Os resultados obtidos provam assim que o extrato fenólico obtido através da decocção de funcho pode ser utilizado como conservante e agente bioativo natural em requeijões.
Resumo:
Cochlospermum angolensis Welw. (borututu) is a widespread tree in Angola that belongs to the Cochlospermaceae family. Its bark infusion is used in the traditional medicine of Angola for the treatment of jaundice, hepatic diseases and for the prophylaxis of malaria [1]. In the present work, three formulations based on this plant (infusion, pills, and syrup) were characterized by HPLC-DAD-ESI/MS regarding phenolic composition, and evaluated by their in vitro antimicrobial activity against isolates of multiresistant bacteria (Escherichia coli, Escherichia coli spectrum extended producer of β-lactamases (ESBL), Proteus mirabilis, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa). The infusion and pills revealed the highest variety of phenolic compounds, with eleven compounds identified. Protocatechuic acid was only present in infusions, being the most abundant compound, while (epi)gallocatechin-O-gallate and eucaglobulin/globulusin were the main molecules identified in pills and syrup, respectively. Methyl ellagic acids, eucaglobulin/globulusin B (Fig. 1) and (epi)gallocatechin-O-gallate were found in all the formulations. The infusion revealed antimicrobial activity against all the studied bacteria with the exception of P. mirabilis whereas the pills revealed activity in E. coli ESBL and MRSA. No significant antimicrobial activity was detected in the syrup, in agreement with its low concentrations of phenolic compounds. None of the tested formulations inhibited P. mirabilis. Considering the obtained results, C. angolensis infusion can be considered a good source of phenolic compounds as well as a good antimicrobial agent.
Resumo:
Edible flowers are being used in culinary preparations to improve the sensorial and nutritional qualities of food, besides improving human health due to the profusion in bioactive compounds [1]. Nevertheless, edible flowers are highly perishable and must be free of insects, which is difficult because they are usually cultivated without using pesticides [2]. Food irradiation is an economically viable technology to extend shelf life of foods, improving their hygiene and quality, while disinfesting insects [3]. The efficiency and safety of radiation processing (using Co-60 or electronaccelerators) have been approved by legal authorities (FDA, USDA, WHO, FAO), as also by the scientific community, based on extensive research [4]. Viola tricolor L. (heartseases), from Violaceae family, is one of the most popular edible flowers. Apart from being used as food, it has also been applied for its medicinal properties, mainly due to their biological activity and phenolic composition [5]. Herein, the phenolic compounds were analyzed by HPLC-DAD-ESI/MS and linear discriminant analysis (LDA) was performed to compare the results from flowers submitted to different irradiation doses and technologies (Co-60 and electron-beam). Quercetin-3-O-(6-O-rhamnosylglucoside)-7-O-rhamnoside (Figure 1) was the most abundant compound, followed by quercetin-3-O-rutinoside and acetyl-quercetin-3-O (6-O-rhamnosylglucoside)-7-O-rhamnoside. In general, irradiated samples (mostly with 1 kGy) showed the highest phenolic compounds content. The LDA outcomes indicated that differences among phenolic compounds effectively discriminate the assayed doses and technologies, defining which variables contributed mostly to that separation. This information might be useful to define which dose and/or technology optimizes the content in a specific phenolic compound. Overall, irradiation did not negatively affect the levels of phenolic compounds, providing the possibility of its application to expand the shelf life of V. tricolor and highlighting new commercial solutions for this functional food.
Resumo:
O morangueiro silvestre (Fragaria vesca L., Rosaceae) está disseminado por toda a Península Ibérica, podendo também ser encontrado na Coreia, América do Norte e Canadá [1]. Apesar dos frutos serem mais consumidos, as partes vegetativas têm sido tradicionalmente usadas devido às suas propriedades tónicas e diuréticas e, em particular as suas decocções são recomendadas no tratamento da hipertensão [2,3]. As propriedades bioativas dos frutos F. vesca têm sido correlacionadas com a presença de compostos fenólicos, nomeadamente ácidos elágicos, procianidinas e flavonóis [4]. No entanto, o perfil fenólico das partes vegetativas é ainda desconhecido. Assim, no presente trabalho foi analisada a composição fenólica de extratos hidrometanólicos e aquosos obtidos a partir de partes vegetativas de amostras comerciais e silvestres de F. Vesca, tendo sido também avaliada a sua atividade antioxidante. Os perfis fenólicos, obtidos por HPLC-DAD-ESI/MS, das amostras comercial e silvestre foram bastante distintos, no entanto, em termos de derivados de ácido elágico, ambas apresentaram o isómero sanguiin h10 como composto maioritário, bem como trímeros de procianidinas e ramnósido de quercetina na amostra comercial e silvestre, respetivamente. A infusão da amostra silvestre apresentou maior atividade captadora de radicais DPPH (EC50= 86.17 μg/mL) e compostos fenólicos (CF = 134.65 mg/g) comparativamente à amostra comercial. A infusão da amostra silvestre mostrou também maior poder redutor, inibição da descoloração do β- caroteno e inibição da formação de TBARS (EC50= 62.23, 12.34 e 3.12 μg/mL, respetivamente); o poder redutor mostrou maior correlação com F e F3O, enquanto o ensaio TBARS se correlacionou mais com DAE e F. A atividade antioxidante da amostra comercial (especialmente o poder redutor e a inibição da descoloração do β- caroteno) revelou uma elevada correlação com a presença de derivados de ácido elágico (DAE), flavonóis (F), flavan-3-óis (F3O) e CF. Os resultados obtidos demonstram o elevado potencial antioxidante das partes vegetativas do morangueiro silvestre, podendo constituir uma nova fonte de compostos bioativos para aplicação na área alimentar e farmacêutica.
Resumo:
Existe por parte dos consumidores uma tendência crescente na escolha de alimentos designados por mais saudáveis em que a presença em aditivos sintéticos é reduzida ou até mesmo ausente. Para melhorar a aparência e/ou propriedades dos alimentos a indústria recorre ao uso de aditivos sintéticos [1], no entanto, alguns autores têm apresentado alguma relação entre o consumo excessivo de alguns desses aditivos com efeitos adversos para a saúde do consumidor [2]. Para contornar esta problemática e ir ao encontro das expectativas dos consumidores, têm sido considerados os extratos naturais obtidos a partir de plantas como excelentes ingredientes naturais para a indústria alimentar como alternativas aos aditivos sintéticos [3]. Este trabalho teve como objetivo comparar os efeitos de antioxidantes naturais (extratos aquosos de Foeniculum vulgare Mill., funcho, e Matricaria recutita L., camomila, obtidos por decocção) com um aditivo sintético (sorbato de potássio, E202) utilizado em iogurtes. Neste trabalho, as amostras de Foeniculum vulgare Mill. (funcho) e Matricaria recutita L. (camomila) foram submetidas a uma extração por decocção. A sua caracterização química foi feita por HPLC-DAD-ESI/MS. As propriedades antioxidantes foram avaliadas através de diferentes ensaios in vitro (efeito captador de radicais livres, poder redutor e inibição da peroxidação lipídica), tal como as propriedades antimicrobianas (contra bactérias e fungos). A incorporação dos extratos foi feita em iogurtes e desta forma, foram preparados quatro grupos de amostras: iogurtes controlo (sem adição de qualquer aditivo), iogurtes com decocção de funcho, iogurtes com decocção de camomila e iogurtes com E202. As amostras foram avaliadas quanto à cor, pH e ao seu valor nutricional e potencial antioxidante. O estudo foi feito no tempo zero e após sete e catorze dias de armazenamento a 4ºC. Tal como podemos observar na Figura 1, a incorporação dos aditivos quer naturais quer sintéticos, não provocou alteração no aspeto visual quando comparado com a amostra controlo sem aditivos (A). Os resultados demonstram ainda que a introdução dos aditivos não provocou alterações significativas no pH e no valor nutricional dos iogurtes quando comparados com o controlo (Tabela 1). No entanto, esta incorporação conferiu propriedades antioxidantes aos iogurtes principalmente, pela adição do extrato de camomila (Figura 2). Estes resultados permitem-nos concluir que os extratos aquosos de funcho e camomila ricos em compostos fenólicos [4,5] podem representar uma alternativa aos conservantes sintéticos melhorando desta forma as propriedades funcionais dos iogurtes sem, no entanto, provocar alterações no perfil nutricional dos mesmos.