1 resultado para Gross Domestic Product
em Instituto Politécnico de Bragança
Filtro por publicador
- JISC Information Environment Repository (4)
- Academic Research Repository at Institute of Developing Economies (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- Aquatic Commons (12)
- Archive of European Integration (10)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (11)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (154)
- CentAUR: Central Archive University of Reading - UK (10)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (3)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (66)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Michigan Tech (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (15)
- Helda - Digital Repository of University of Helsinki (19)
- Indian Institute of Science - Bangalore - Índia (86)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (4)
- Memoria Académica - FaHCE, UNLP - Argentina (7)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (14)
- Queensland University of Technology - ePrints Archive (285)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (12)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (23)
- Repositorio Institucional Universidad de Medellín (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (7)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Universidad del Rosario, Colombia (18)
- Universidad Politécnica de Madrid (10)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universidade Metodista de São Paulo (1)
- Université de Montréal, Canada (3)
- University of Michigan (7)
- University of Queensland eSpace - Australia (6)
- University of Washington (2)
- WestminsterResearch - UK (4)
Resumo:
This study is aimed to model and forecast the tourism demand for Mozambique for the period from January 2004 to December 2013 using artificial neural networks models. The number of overnight stays in Hotels was used as representative of the tourism demand. A set of independent variables were experimented in the input of the model, namely: Consumer Price Index, Gross Domestic Product and Exchange Rates, of the outbound tourism markets, South Africa, United State of America, Mozambique, Portugal and the United Kingdom. The best model achieved has 6.5% for Mean Absolute Percentage Error and 0.696 for Pearson correlation coefficient. A model like this with high accuracy of forecast is important for the economic agents to know the future growth of this activity sector, as it is important for stakeholders to provide products, services and infrastructures and for the hotels establishments to adequate its level of capacity to the tourism demand.