3 resultados para Frame-of-reference
em Instituto Politécnico de Bragança
Resumo:
Tomato (Lycopersicon esculentum Mill.) is the second most important vegetable crop worldwide and a rich source of hydrophilic (H) and lipophilic (L) antioxidants. The H fraction is constituted mainly by ascorbic acid and soluble phenolic compounds, while the L fraction contains carotenoids (mostly lycopene), tocopherols, sterols and lipophilic phenolics [1,2]. To obtain these antioxidants it is necessary to follow appropriate extraction methods and processing conditions. In this regard, this study aimed at determining the optimal extraction conditions for H and L antioxidants from a tomato surplus. A 5-level full factorial design with 4 factors (extraction time (I, 0-20 min), temperature (T, 60-180 •c), ethanol percentage (Et, 0-100%) and solid/liquid ratio (S/L, 5-45 g!L)) was implemented and the response surface methodology used for analysis. Extractions were carried out in a Biotage Initiator Microwave apparatus. The concentration-time response methods of crocin and P-carotene bleaching were applied (using 96-well microplates), since they are suitable in vitro assays to evaluate the antioxidant activity of H and L matrices, respectively [3]. Measurements were carried out at intervals of 3, 5 and 10 min (initiation, propagation and asymptotic phases), during a time frame of 200 min. The parameters Pm (maximum protected substrate) and V m (amount of protected substrate per g of extract) and the so called IC50 were used to quantify the response. The optimum extraction conditions were as follows: r~2.25 min, 7'=149.2 •c, Et=99.1 %and SIL=l5.0 giL for H antioxidants; and t=l5.4 min, 7'=60.0 •c, Et=33.0% and S/L~l5.0 g/L for L antioxidants. The proposed model was validated based on the high values of the adjusted coefficient of determination (R2.wi>0.91) and on the non-siguificant differences between predicted and experimental values. It was also found that the antioxidant capacity of the H fraction was much higher than the L one.
Resumo:
Thymus plants comprise distinct species with claimed health properties [1], commonly associated to their essential oils and phenolic compounds. Albeit that, the phenolic composition and the biological activities of many Thymus species remain unclear. This work aimed to elucidate the phenolic composition and antioxidant properties of aqueous extracts from Thymus herba barona, Thymus caespetitus and Thymus fragrantissimus. The aqueous extracts of the three Thymus species were evaluated for their total phenolic compounds by an adaptation of the Folin-Ciocalteu method [2], and individual phenolic compounds were identified by high performance liquid chromatography associated with electrospray mass spectrometry (HPLC-DAD-ESI-MSn) in the negative mode. The antioxidant activity of each extract was carried out by DPPH● scavenging assay and ferric reducing antioxidant power assays [3]. Total phenolic compounds in the three extracts ranged from 236±27 (T. caespetitus) to 273±17 μg GAE/mg (T. fragrantissimus). Similarly to other Thymus species [1,4], these extracts were rich in caffeic acid derivatives (characteristic UV spectra maxima at 290 and 328 nm) and mainly composed of rosmarinic acid (MW 360). Other caffeic acid derivatives included salvianolic acid K (MW 556) and 3′-O-(8″-Z-caffeoyl)rosmarinic acid (MW 538). High amounts of the flavone luteolin-O-glucuronide ([M-H]− at m/z 461→285) were found in T. caespetitus while the others species contained moderate amounts of this compound. T. herba barona, T. caespetitus and T. fragrantissimus extracts showed high DPPH radical scavenge ability (EC50 values 11.6±0.9, 13.8±0.6 and 10.9±1.2 μg/mL respectively), as well as high reducing power (EC50 values of 35.1±4.5, 39.3±2.7 and 32.4±4.3 μg/mL, respectively), that were comparable to those of reference compounds. This work is an important contribution for the phytochemical characterization and the antioxidant capacity of these three Thymus species.
Resumo:
Thymus plants comprise distinct species with claimed health properties [1], commonly associated to their essential oils and phenolic compounds. Albeit that, the phenolic composition and the biological activities of many Thymus species remain unclear. This work aimed to elucidate the phenolic composition and antioxidant properties of aqueous extracts from Thymus herba barona, Thymus caespetitus and Thymus fragrantissimus. The aqueous extracts of the three Thymus species were evaluated for their total phenolic compounds by an adaptation of the Folin-Ciocalteu method [2], and individual phenolic compounds were identified by high performance liquid chromatography associated with electrospray mass spectrometry (HPLC-DAD-ESI-MSn) in the negative mode. The antioxidant activity of each extract was carried out by DPPH● scavenging assay and ferric reducing antioxidant power assays [3]. Total phenolic compounds in the three extracts ranged from 236±27 (T. caespetitus) to 273±17 μg GAE/mg (T. fragrantissimus). Similarly to other Thymus species [1,4], these extracts were rich in caffeic acid derivatives (characteristic UV spectra maxima at 290 and 328 nm) and mainly composed of rosmarinic acid (MW 360). Other caffeic acid derivatives included salvianolic acid K (MW 556) and 3′-O-(8″-Z-caffeoyl)rosmarinic acid (MW 538). High amounts of the flavone luteolin-O-glucuronide ([M-H]− at m/z 461→285) were found in T. caespetitus while the others species contained moderate amounts of this compound. T. herba barona, T. caespetitus and T. fragrantissimus extracts showed high DPPH radical scavenge ability (EC50 values 11.6±0.9, 13.8±0.6 and 10.9±1.2 μg/mL respectively), as well as high reducing power (EC50 values of 35.1±4.5, 39.3±2.7 and 32.4±4.3 μg/mL, respectively), that were comparable to those of reference compounds. This work is an important contribution for the phytochemical characterization and the antioxidant capacity of these three Thymus species.