7 resultados para Fire-fighter
em Instituto Politécnico de Bragança
Resumo:
The wooden cellular slabs are lightweight structures, easy to assemble, and with excellent architectural features, as good thermal and acoustic conditions. The wooden cellular slabs with perforations are typical and very common engineering solutions, used in the ceiling or flooring to improve the acoustic absorption of compartments, and also have a good insulation and relevant architectonic characteristics. However, the high vulnerability of wooden elements submitted to fire conditions requires the evaluation of its structural behaviour with accuracy. The main objective of this work is to present a numerical model to assess the fire resistance of wooden cellular slabs with different perforations. Also the thermal behaviour of the wooden slabs will be compared considering material insulation inside the cavities. The time-temperature history and the residual cross-section of wooden slabs were numerically measured and analysed.
Resumo:
The wooden cellular slabs are lightweight structures, easy to assemble, and with excellent architectural features, as thermal and acoustic conditions. The wooden cellular slabs with perforations are typical and very common engineering solutions, used in the ceiling or flooring plates to improve the acoustic absorption of compartments, and also have a good insulation and relevant architectonic characteristics. However, the high vulnerability of wooden elements submitted to fire conditions requires the evaluation of its structural behavior with accurately. The main objective of this work is to present a numerical model to assess the fire resistance of wooden cellular slabs with different perforations. Also the thermal behavior of the wooden slabs will be compared considering material insulation inside the cavities
Resumo:
Wood is a natural and traditional building material, as popular today as ever, and presents advantages. Physically, wood is strong and stiff, but compared with other materials like steel is light and flexible. Wood material can absorb sound very effectively and it is a relatively good heat insulator. But dry wood burns quite easily and produces a great deal of heat energy. The main disadvantage is the high level of combustion when exposed to fire, where the point at which it catches fire is from 200–400°C. After fire exposure, is need to determine if the charred wooden structures are safe for future use. Design methods require the use of computer modelling to predict the fire exposure and the capacity of structures to resist those action. Also, large or small scale experimental tests are necessary to calibrate and verify the numerical models. The thermal model is essential for wood structures exposed to fire, because predicts the charring rate as a function of fire exposure. The charring rate calculation of most structural wood elements allows simple calculations, but is more complicated for situations where the fire exposure is non-standard and in wood elements protected with other materials. In this work, the authors present different case studies using numerical models, that will help professionals analysing woods elements and the type of information needed to decide whether the charred structures are adequate or not to use. Different thermal models representing wooden cellular slabs, used in building construction for ceiling or flooring compartments, will be analysed and submitted to different fire scenarios (with the standard fire curve exposure). The same numerical models, considering insulation material inside the wooden cellular slabs, will be tested to compare and determine the fire time resistance and the charring rate calculation.
Resumo:
Wood is a natural and traditional building material, as popular today as ever, and presents advantages. Physically, wood is strong and stiff, but compared with other materiais like steel is light and flexible. Wood material can absorb sound very effectively and it is a relatively good heat insulator. But dry wood does bum quite easily md produces a great deal ofheat energy. The main disadvantage is the high levei ofcombustion when exposed to fíre, where the point at which it catches fire is fi-om 200-400°C. After fu-e exposure, is need to determine if the charred wooden stmctures are safe for future use. Design methods require the use ofcomputer modelling to predict the fíre exposure and the capacity ofstructures to resist fhose action. Also, large or small scale experimental tests are necessary to calibrate and verify the numerical models. The thermal model is essential for wood stmctures exposed to fire, because predicts the charring rate as a fünction offire exposure. The charring rate calculation ofmost stmctural wood elements allows simple calculations, but is more complicated for situations where the fire exposure is non-standard and in wood elements protected with other materiais.
Resumo:
This paper presents a numerical approach with finite element method in order to predict both the behaviour and the performance of the wooden slabs with rectangular perforations under fire exposure. These typical constructions have good sound absorption, thermal insulation and relevant architectonic features, they are used in many civil engineering applications. These slabs are normally installed at lower level in building constructions essentially due to an easy maintenance requisite. Depending on the installation requirement, the perforated wooden slabs could have an additional insulation material inside the cavities. The proposed numerical model could be applied to different design constructive slab solutions. For this purpose a 3D numerical simulation was conducted with particular attention to the wood thermal properties variation with temperature. The numerical results were compared with those obtained experimentally in laboratory, for two wooden slabs. The fire resistance (performance criteria related to the insulation (I) and integrity (E)) was evaluated, as well as the effect of rectangular perforations into the residual cross section of the slab. This study was conducted in accordance with European Standard EN 1365-2 and using a fire resistance furnace which complies the requirements of EN 1363-1 in the experimental test.
Resumo:
This paper present a study on the behaviour of tabique walls, concerning its fire resistance. This work is based on the experimental analysis of real scale tabique panels. Such walls were made in pine wood with an earth-based mortar finishing. In order to assess the earth-based mortar thickness effect on the fire resistance of the wall, three specimens were tested with three different mortar thicknesses of 15 mm, 10 mm and 5 mm. The earth-based mortar was previously analysed in the laboratory. The wooden structures were constructed based on traditional tabique technique. The experimental models were tested in a fire-resistance furnace, according to the ISO 834 standard fire. Temperatures were recorded using two data acquisition systems (spot measuring and field measuring). Fire resistance of test elements is expressed as the time during which the appropriate criteria have been satisfied so that one can predict the time before collapse, increasing both people and property safety. The obtained results are of great importance as they allow to improve the knowledge on tabique walls behaviour subjected to fire conditions. Two performance criteria were verified: the integrity criteria and the insulation criteria.
Resumo:
Recent research works have concluded that corn cob may have interesting material properties, in particular, lightness, and thermal and sound insulation abilities. In this research work, corn cob is proposed as an alternative sustainable aggregate for lightweight concrete masonry unit (CMU) manufacturing. The corn cob requires to be granulated previously in order to obtain adequate particle size grade. Subsequently, the particles are wrapped in a cement paste with the purpose of reducing their water abortion and adherent capacities. CMU are current applied in the building of partition walls. The main goal of this research work consists on studying the fire behaviour of partition walls built with CMU of processed corn cob granulate (CMU-PCC).