2 resultados para Experimental Analysis
em Instituto Politécnico de Bragança
Resumo:
This paper present a study on the behaviour of tabique walls, concerning its fire resistance. This work is based on the experimental analysis of real scale tabique panels. Such walls were made in pine wood with an earth-based mortar finishing. In order to assess the earth-based mortar thickness effect on the fire resistance of the wall, three specimens were tested with three different mortar thicknesses of 15 mm, 10 mm and 5 mm. The earth-based mortar was previously analysed in the laboratory. The wooden structures were constructed based on traditional tabique technique. The experimental models were tested in a fire-resistance furnace, according to the ISO 834 standard fire. Temperatures were recorded using two data acquisition systems (spot measuring and field measuring). Fire resistance of test elements is expressed as the time during which the appropriate criteria have been satisfied so that one can predict the time before collapse, increasing both people and property safety. The obtained results are of great importance as they allow to improve the knowledge on tabique walls behaviour subjected to fire conditions. Two performance criteria were verified: the integrity criteria and the insulation criteria.
Resumo:
Osteotomy or bone cutting is a common procedure in orthopaedic surgery, mainly in the treatment of fractures and reconstructive surgery. However, the excessive heat produced during the bone drilling process is a problem that counters the benefits of this type of surgery, because it can result in thermal osteonecrosis, bone reabsorption and damage the osseointegration of implants. The analysis of different drilling parameters and materials can allow to decrease the temperature during the bone drilling process and contribute to a greater success of this kind of surgical interventions. The main goal of this study was to build a numerical three-dimensional model to simulate the drilling process considering the type of bone, the influence of cooling and the bone density of the different composite materials with similar mechanical properties to the human bone and generally used in experimental biomechanics. The numerical methodology was coupled with an experimental methodology. The use of cooling proved to be essential to decrease the material damage during the drilling process. It was concluded that the materials with less porosity and density present less damage in drilling process. The developed numerical model proved to be a great tool in this kind of analysis. © 2016, The Brazilian Society of Mechanical Sciences and Engineering.