4 resultados para Drilling and boring
em Instituto Politécnico de Bragança
Resumo:
Osteotomy or bone cutting is a common procedure in orthopaedic surgery, mainly in the treatment of fractures and reconstructive surgery. However, the excessive heat produced during the bone drilling process is a problem that counters the benefits of this type of surgery, because it can result in thermal osteonecrosis, bone reabsorption and damage the osseointegration of implants. The analysis of different drilling parameters and materials can allow to decrease the temperature during the bone drilling process and contribute to a greater success of this kind of surgical interventions. The main goal of this study was to build a numerical three-dimensional model to simulate the drilling process considering the type of bone, the influence of cooling and the bone density of the different composite materials with similar mechanical properties to the human bone and generally used in experimental biomechanics. The numerical methodology was coupled with an experimental methodology. The use of cooling proved to be essential to decrease the material damage during the drilling process. It was concluded that the materials with less porosity and density present less damage in drilling process. The developed numerical model proved to be a great tool in this kind of analysis. © 2016, The Brazilian Society of Mechanical Sciences and Engineering.
Resumo:
The behaviour of bone tissue during drilling has been subject of recent studies due to its great importance. Because of thermal nature of the bone drilling, high temperatures and thermal mechanical stresses are developed during drilling that affect the process quality. However, there is still a lack information with regard to the distribution of mechanical and thermal stresses during bone drilling. The present paper describes a sequentially coupled thermal-stress analysis to assess the mechanical and thermal stress distribution during bone drilling. A three-dimensional thermo-mechanical model was developed using the ANSYS/LSDYNA finite element code under different drilling conditions. The model incorporates the dynamic characteristics of drilling process, as well as the thermo-mechanical properties of the involved materials. Experimental tests with polyurethane foam materials were also carried out. It was concluded that the use of higher feed-rates lead to a decrease of normal stresses and strains in the foam materials. The experimental and numerical results were compared and showed good agreement. The proposed numerical model could be used to predict the better drilling parameters and minimize the bone injuries.
Resumo:
The behaviour of bone tissue during drilling has been subject of recent studies due to its great importance. Because of thermal nature of the bone drilling, high temperatures and thermal mechanical stresses are developed during drilling that affect the process quality. However, there is still a lack information with regard to the distribution of mechanical and thermal stresses during bone drilling.
Resumo:
Bone is a dynamic, highly vascularized tissue with a unique capacity to heal and regenerate without scarring. However, drilling remains a concern in several clinical procedures due to thermal damage of the bone and surrounding tissue. The success of this surgeries is dependent of many factors and also in temperature generation during the drilling bone. When an excessive heat is produced during the drilling, thermal necrosis can occur and the bone suffers injuries. Studies have shown that the increased temperature is directly related with the drilling parameters, particularly, the drill speed, feed-rate, applied force, the depth of cut, the geometry of the drill bit, the use or not of a cooling system and also the type of bone.