4 resultados para Dried foods.

em Instituto Politécnico de Bragança


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Food irradiation is a treatment that involves subjecting in-bulk or packaged food to a controlled dose of ionizing radiation, with a clearly defined goal. It has been used for disinfestation and sanitization of food commodities and to retard postharvest ripening and senescence processes, being a sustainable alternative to chemical agents 1 . Doses up to 10 kGy are approved by several international authorities for not offering negative effects to food from a nutrition and toxicology point of view 2 . However, the adoption of this technology for food applications has been a slow process due to some misunderstandings by the consumer who often chooses non-irradiated foods. In this study, the effects of the ionizing radiation treatment on physical, chemical and bioactive properties of dried herbs and its suitability for preserving quality attributes of fresh vegetables during cold storage were evaluated. The studied herbs, perennial spotted rockrose (Tuberaria lignosa (Sweet) Samp.) and common mallow (Malva neglecta Wallr.) were freeze-dried and then irradiated up to 10 kGy in a Cobalt-60 chamber. The selected vegetables, watercress (Nasturtium officinale R. Br.) and buckler sorrel (Rumex induratus Boiss. Reut.) were rinsed in tap water, packaged in polyethylene bags, submitted to irradiation doses up to 6 kGy and then were stored at 4 C for a period of up to 12 days. Physical, chemical and bioactive parameters of irradiated and non-irradiated samples were evaluated using different methodologies the colour was measured with a colorimeter, individual chemical compounds were analyzed by chromatographic techniques, antioxidant properties were evaluated using in vitro assays based on different reaction mechanisms, and other quality analyses were performed following official methods of analysis. The irradiation treatment did not significantly affect the colour of the perennial spotted rockrose samples, or its phenolic composition and antioxidant activity 3 . Medium doses preserved the colour of common mallow and a low dose did not induce any adverse effect in the organic acids profile. The green colour of the irradiated vegetables was maintained during cold storage but the treatment had pros and cons in other quality attributes. The 2 kGy dose preserved free sugars and favoured polyunsaturated fatty acids (PUFA) while the 5 kGy dose favoured tocopherols and preserved the antioxidant properties in watercress samples. The 6 kGy dose was a suitable option for preserving PUFA and the ω-6 ω-3 fatty acids ratio in buckler sorrel samples. This comprehensive experimental work allowed selecting appropriate processing doses for the studied plant foods in order to preserve its quality attributes and edibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mushrooms are very perishable foods due to their high susceptibility to moisture loss, changes in color and texture, or microbiological spoilage. Drying is considered as the most appropriate method to prevent these alterations, but it has some limitations, such as shrinkage, enzymatic and non-enzymatic browning reactions, and oxidation of lipids and vitamins. Irradiation might effectively attenuate the undesirable changes caused by drying process, ensuring also higher shelf-life of mushrooms and their decontamination [I]. In the present work, the combined effects of electron-beam irradiation (at 0, 0.5, 1 and 6 kGy doses) and storage time (at 0, 6 and 12 months) were evaluated and compared. Macrolepiota procera (Scop.) Singer wild samples were obtained in Tnis-os-Montes, in the Northeast of Portugal, and dried at 30 •c in an oven. Subsequently, the samples were divided in four groups: control (non-irradiated, 0 kGy); sample 1 (0.5 kGy); sample 2 (1 kGy) and sample 3 (6 kGy). The irradiation was performed at the lNCTInstitute of Nuclear Chemistry and Technology (lNCT), in Warsaw, Poland. Moisture, protein, fat, carbohydrates and ash were determined following standard procedures. Free sugars and tocopherols were determined by high performance liquid chromatography coupled to a refraction index detector (HPLC-RI) and a fluorescence detector, respectively; fatty acids were determined by gas-liquid chromatography with flame ionization detection (GC-FID). Antioxidant activity was evaluated in the methanolic extracts by in vitro assays measuring DPPH (1,1-diphenyl-2- picrylhydrazyl) radical scavenging activity, reducing power, inhibition of ~-carotene bleaching and inhibition oflipid peroxidation using thiobarbituric acid reactive substances (TBARS) assay. Total phenolics were also determined by the Folin-Ciocalteu assay. All the parameters showed a decrease tendency with storage time. Trehalose and y-tocopherol were preserved with 1 kGy dose. Electron-beam irradiation did not impart additional changes to most of the chemical and antioxidant parameters of M. procera dried samples. This is a very promising result, since electron-beam irradiation might attenuate most unwanted changes caused by drying, maintaining its long-term effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, many consumers search for food with functional characteristics beyond their nutritional properties. Thus, the concept of functional food becomes a hot topic, allowing the obtaining of health benefits, including disease prevention. In this context, plants are recognized as sources of a wide range of bioactives, mainly phenolic compounds. In particular, the Rosmarinus officina/is L., commonly referred as rosemary, has several phenolic compounds with different bioactive properties such as antioxidant, antiinflammatory and antimicrobial activities, among others [!]. Hence, this plant has great potential for incorporation into foods in order to confer bioactivity to the final products. However, it should be highlighted that the bioactive compounds if exposed to adverse environments, for example: light, moisture, extreme pH, storage, food processing conditions, can be degraded leading to the consequent loss of bioactivity [2]. The microencapsulation is an alternative to overcome this problematic of bioactive compounds, as also to ensure controlled release, or target deliver to a specific site [3]. In this work, lyophilized rosemary aqueous extract prepared by in:'usion was used as a functional ingredient for cottage cheeses, after proving that it possesses, both higher content in phenolic compounds and higher antioxidant activity, comparatively with the corresponding hydroethanolic extract. The rosemary aqueous extract revealed, for example, a DPPH scavenging activity with an EC50 value of 73.44±0.54j!g/mL and presented as main phenolic compound the caffeic acid dimer, commonly named as rosmarinic acid. For the functionalized cottage cheeses, a decrease of bioactivity was observed after seven days under storage in fridge, when the extracts were incorporated in its free form. Therefore, to preserve the antioxidant activity, the rosemary aqueous extract was efficiently microencapsulated by using an atomization/coagulation technique and alginate as the matrix material and thereafter incorporated into the cottage cheeses. The final microspheres showed a size, estimated by OM using a magnification of I OOx, ranging between 51.1 and 122.6 J!m and an encapsulation efficiency, estimated through an indirect method, approaching 100%. Overall, the introduction of both free and microencapsulated extracts did not change the nutritional value of cottage cheeses, providing bioactivity that was more preserved with microencapsulated extracts putting in evidence the importance of using microencapsulation to develop effective functional foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamins and mineral elements are among the most important phytochemicals due to their important role in the maintenance of human health. Despite these components had already been studied in different plant species, their full characterization in several wild species is still scarce. In addition, the knowledge regarding the in vivo effects of phytochemicals, particularly their bioaccessibility, is still scarce. Accordingly, a membrane dialysis process was used to simulate gastrointestinal conditions in order to assess the potential bioaccessibility of mineral elements in different preparations of Achillea millefolium (yarrow), Laurus nobilis (laurel) and Taraxacum sect. Ruderalia (dandelion). The retention/passage dynamics was evaluated using a cellulose membrane with 34 mm pore. Dandelion showed the highest levels of all studied mineral elements (except zinc) independently of the used formulations (dried plant or infusion), but yarrow was the only species yielding minerals after the dialysis step, either in dried form, or as infusion. In fact, the ability of each evaluated element to cross the dialysis membrane showed significant differences, being also highly dependent on the plant species. Regarding the potential use of these plants as complementary vitamin B9 sources, the detected values were much lower in the infusions, most likely due to the thermolability effect.