3 resultados para Cinnamic acid
em Instituto Politécnico de Bragança
Resumo:
Mushrooms are known as a powerful source of bioactive compounds including antioxidants, inhibitors of human tumour cell lines growth, inducers of apoptosis and enhancers of immunity. Indeed, many pre-clinical studies have been conducted in human tumour cell lines and in some cases a number of compounds isolated from mushrooms have followed to clinical trials. The Northeast of Portugal is one of the European regions with higher wild mushrooms diversity. However, to our knowledge, no studies had been conducted so far to verify their bioactivities. The main aim of this work was the evaluation of the bioactive properties (antioxidant properties and growth inhibitory potential on human tumour cell lines) of wild edible mushrooms collected in the Northeast of Portugal. Once properly identified, methanolic, ethanolic and boiling water extracts were prepared from thirty eight wild mushroom species collected in that region. Chemical characterization was obtained by high performance liquid chromatography (HPLC) coupled to a photodiode array detector (DAD) or to a refraction index detector (RI). Antioxidant activity assays were carried out in those extracts, including evaluation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging capacity, reducing power and inhibition of β-carotene bleaching. Extract-induced cell growth inhibition was assessed with the sulforhodamine B assay in four human tumour cell lines (NCI-H460 - lung cancer, MCF-7 -breast cancer, HCT-15 -colon cancer and AGS - gastric cancer). The effects on cell cycle profile and apoptosis were evaluated by flow cytometry and the effect on the expression levels of proteins related to cell cycle and apoptosis was further investigated by Western blotting. Three wild edible mushroom species revealed growth inhibitory activity in the studied human tumour cell lines: Clitocybe alexandri ethanolic extract, Lepista inversa methanolic extract and Suillus collinitus methanolic extract. C. alexandri ethanolic extract induced an S-phase cell cycle arrest and increased the percentage of apoptotic cells, in the NCI-H460 cell line. The analysed mushroom species also provided interesting antioxidant potential, mainly the boiling water extract of L. inversa which showed the highest DPPH radical scavenging activity, reducing power and β-carotene bleaching inhibition. S. collinitus methanolic extract induced a slight increase in the number of cells in G1, with a concomitant decrease in the percentage of cells in the S phase of the cell cycle and an increase in the percentage of apoptotic cells, in the MCF-7 cell line. The combined use of the S. collinitus methanolic extract and etoposide caused a greater decrease in the percentage of cell growth, when compared to either of them used individually, indicating the potential benefit of this combination. The tested extracts were chemically characterized and protocatechuic, p-hydroxybenzoic, p-coumaric and cinnamic acids were the main compounds identified on the phenolic (methanolic and ethanolic) extracts, while mannitol, trehalose and arabinose were the main sugars found in the polysaccharidic (boiling water) extracts after hydrolysis. The individual compounds identified in the extracts were submitted to a screening of tumour cells growth inhibitory activity, but only the phenolic acids and a related compound, cinnamic acid, presented activity. This compound was found to be the most potent one regarding cell growth inhibition in the NCI-H460 cell line. The effect of the individual and combined treatment with the identified compounds was also evaluated. Cinnamic and protochatequic acids caused a statistically significantly reduction in the number of viable cells. In addition, p-hydroxybenzoic acid did not show any significantly reduction in the viable cell number. Nevertheless, it was verified that the concomitant use of the three compounds provided the strongest decrease in the viable cell number, suggesting a possible concomitant effect of those compounds. Overall, the present work has contributed to further understand the bioactive potential of wild edible mushrooms from the Northeast of Portugal. This study allowed to identify some species with antioxidant or tumour cell growth inhibitory potential.
Resumo:
The antioxidant potential of mushrooms is mainly attributed to their composition in polysaccharides, phenolic compounds, tocopherols and some organic acids [1]. Phenolic compounds contribute directly to the antioxidative action and play an important role in stabilizing lipid peroxidation [2]; exhibit a wide range of bioactive properties such as anti-allergenic, anti-inflammatory and antimicrobial, which have been in part related to their antioxidant activity [3]. Tocopherols are important fatsoluble antioxidants, acting in the cellular membrane; due to their role as scavenger of free radicals protecting human cells against degenerative malfunctions [4]. Some organic acids are very common in natural matrices; malic acid contributes to a pleasantly sour taste and is often used as a food additive; citric acid is known due to its antibacterial and antioxidant properties and fumaric acid is important because of its antioxidant, anti-inflammatory, antimicrobial and acidifying properties [5]. The purpose of the present study was to analyze antioxidant and related compounds (phenolic compounds, tocopherols and organic acids) of Polyporus squamosus (Huds.) Fr. samples originated from two different origins (Portugal and Serbia). Specimens of P. squamosus were collected in Bragança (Northeast Portugal) and Jabučki rit (Northern Serbia) during April 2015 and 2012, respectively. Phenolic compounds, organic acids and tocopherols were determined by high performance liquid chromatograph (HPLC) coupled to a diode array detector (DAD), in the two first cases, and a fluorescence detector in the last one. With respect to phenolic and related compounds, p-hydroxybenzoic and cinnamic acids were identified in both samples; the first one predominates in the sample from Portugal, while cinnamic acid was more abundant in the sample from Serbia. Tocopherols (α-, β and γ-isoforms) were found in the sample from Serbia, but in the sample from Portugal, γ-tocopherol was not identified. This sample showed the highest total tocopherols content, and revealed the highest level of β-tocopherol; γ- tocopherol predominated in the sample from Serbia. Among organic acids, it was possible to quantify oxalic, malic and fumaric acids in both samples. Malic acid was found in higher amounts in the sample from Serbia. Overall, the present study shows that mushroom samples from different origins have dissimilar results, but are both rich in bioactive compounds, being a valuable source for the development of natural medicines and nutraceuticals.
Resumo:
In recent years the interest in naturally occurring compounds has been increasing worldwide. Indeed, many of the bioactive compounds currently used as medicines have been synthesized based on the structure of natural compounds [1]. In order to obtain bioactive fractions and subsequently isolated compounds derived from natural matrices, several procedures have been carried out. One of these is to separate and assess the concentration of the active compound(s) present in the samples, a step in which the chromatographic techniques stand out [2]. In the present work the mushroom Sui/Ius granulatus (L.) Roussel was chemically characterized by chromatographic techniques coupled to different detectors, in order to evaluate the presence of nutritional and/or bioactive molecules. Some hydrophilic compounds, namely free sugars, were identified by high performance liquid chromatography coupled to a refraction index detector (HPLC-RI), and organic and phenolic acids were assessed by HPLC coupled to a photodiode array detector (HPLC-PDA). Regarding lipophilic compounds, fatty acids weredetermined by gas chromatography with a flame ionization detector (GC-FID) and tocopherols by HPLC-fluorescence detection. Mannitol and trehalose were the main free sugars detected. Different organic acids were also identified (i.e. oxalic, quinic and fumaric acids), as well as phenolic acids (i.e. gallic and p-hydroxybenzoic acids) and the related compound cinnamic acid. Mono- and polyunsaturated fatty acids were the prevailing fatty acids and a-, ~- and ~-tocopherol were the isoforms of vitamin E detected in the samples. Since this species proved to be a source of biologically active compounds, the antioxidant and antimicrobial properties were evaluated. The antioxidant activity was measured through the reducing power, free radical's scavenging activity and lipid peroxidation inhibition of its methanolic extract, and the antimicrobial activity was also tested in Gram positive and Gram negative bacteria and iri different fungi. S. granulatus presented antioxidant properties in all the performed assays, and proved to inhibit the growth of different bacterial and fungal strains. This study is a first step for classifying S. granulatus as a functional food, highlighting the potential of mushrooms as a source of nutraceutical and biologically active compounds.