6 resultados para Chromatographic fingerprint
em Instituto Politécnico de Bragança
Resumo:
The biochemistry of cheese ripening involves mechanisms such as glycolysis, proteolysis and lipolysis. Fatty acids are released by the action of lipases from different sources, milk, rennet, bacteria, moulds included as secondary starters, and other exogenous lipases, during lipolysis [1]. The composition of the lipid fraction contributes positively to the flavour of cheese, for being precursors of more complex aroma compounds responsible for the characteristic “goaty flavour” of goat cheeses [2]. Goat milk is recognized by its easier digestibility, alkalinity, buffering capacity and certain therapeutic values in medicine and human nutrition [3]. A high total content of fatty acids is strongly linked to a rancid and tart off flavour in goat milk and may be considered undesirable in most cheese varieties [4]. In this sense, the purpose of the present study was to examine the composition and changes in fatty acids and saponification value of goat cheese during curing period (2, 7 and 12 months). Goat cheese was made in industrial unit of Cachão - Mirandela (Trás-os- Montes) with raw milk Serrana goats’ race, salt and rennet from animal origin. During the first two months, the samples were stored in a ripening chamber (9.5-11 °C and RH 75-85%). From the second month to one year, the samples were stored in a preservation chamber (10.5-12 °C and RH 75-85%). The fatty acids profile of the inner part of the cheese was analyzed by gas-chromatography coupled to flame ionization detection (GC-FID). The degree of saponification was determined both in the crust and inside the cheese by HCl titration of ethanol KOH solution of the samples. Twenty-six fatty acids (FA) were identified and quantified in the inner part of the cheese (total fat was 45-46 g/100 g during the curing period). Saturated fatty acids (SFA) did not change up to 7 months of curing, increasing only after 12 months, being palmitic (C16:0), stearic (C18:0), myristic (C14:0) and capric (C10:0) acids the most abundant FA in this class. Monounsaturated fatty acids (MUFA) decreased only after 12 months, and oleic acid (C18:1) was the predominant FA. In polyunsaturated fatty acids (PUFA) class, the most abundant were linoleic (C18:2) and linolenic (C18:3) acids, and followed the same tendency of MUFA. This is corroborated by an increase in the degree of saponification, either in the crust as in the inner part of the cheese, after 12 months of curing, probably related with the saturation of the fatty acids [3]. Extra-long curing can be done in cheeses produced with goat milk up to seven months of storage without changing the total fat and individual FA content.
Resumo:
The antioxidant potential of mushrooms is mainly attributed to their composition in polysaccharides, phenolic compounds, tocopherols and some organic acids [1]. Phenolic compounds contribute directly to the antioxidative action and play an important role in stabilizing lipid peroxidation [2]; exhibit a wide range of bioactive properties such as anti-allergenic, anti-inflammatory and antimicrobial, which have been in part related to their antioxidant activity [3]. Tocopherols are important fatsoluble antioxidants, acting in the cellular membrane; due to their role as scavenger of free radicals protecting human cells against degenerative malfunctions [4]. Some organic acids are very common in natural matrices; malic acid contributes to a pleasantly sour taste and is often used as a food additive; citric acid is known due to its antibacterial and antioxidant properties and fumaric acid is important because of its antioxidant, anti-inflammatory, antimicrobial and acidifying properties [5]. The purpose of the present study was to analyze antioxidant and related compounds (phenolic compounds, tocopherols and organic acids) of Polyporus squamosus (Huds.) Fr. samples originated from two different origins (Portugal and Serbia). Specimens of P. squamosus were collected in Bragança (Northeast Portugal) and Jabučki rit (Northern Serbia) during April 2015 and 2012, respectively. Phenolic compounds, organic acids and tocopherols were determined by high performance liquid chromatograph (HPLC) coupled to a diode array detector (DAD), in the two first cases, and a fluorescence detector in the last one. With respect to phenolic and related compounds, p-hydroxybenzoic and cinnamic acids were identified in both samples; the first one predominates in the sample from Portugal, while cinnamic acid was more abundant in the sample from Serbia. Tocopherols (α-, β and γ-isoforms) were found in the sample from Serbia, but in the sample from Portugal, γ-tocopherol was not identified. This sample showed the highest total tocopherols content, and revealed the highest level of β-tocopherol; γ- tocopherol predominated in the sample from Serbia. Among organic acids, it was possible to quantify oxalic, malic and fumaric acids in both samples. Malic acid was found in higher amounts in the sample from Serbia. Overall, the present study shows that mushroom samples from different origins have dissimilar results, but are both rich in bioactive compounds, being a valuable source for the development of natural medicines and nutraceuticals.
Resumo:
Irradiation is being progressively considered as a versatile and effective conservation technique [1]. Based on this premise, our research group has been investigating the effects of different irradiation conditions in several food matrices. Aromatic plants are among the food products that require suitable conservation technologies to expand their use [2]. The effects of irradiation on the four species (Aloysia citrodora, Melissa officinalis, Melittis melissophyllum and Mentha piperita) studied herein were previously evaluated. In the present study, the same species were treated with different doses of electron-beam irradiation (0, 1 and 10 kGy) and several parameters were evaluated. The individual sugars profile was determined by HPLCRI, fatty acids by GC-FID, organic acids by HPLC-PDA and tocopherols by HPLCfluorescence. In general, the evaluated parameters remained practically unchanged, regardless of plant species or the irradiation dose. Regarding the profile of sugars, the major change was a decrease in the content of disaccharides. The most notable variations in organic acids were observed in plant species with the highest content in these molecules, especially the decrease observed in the samples of M. officinalis and M. melissophyllum. Among the tocopherols, the α and β isoforms were more susceptible to radiation, while the application of 1 kGy tended to increase the levels of tocopherols in Aloysia citrodora, while 10 kGy had the same effect on M. melissophyllum. M. piperita sample showed the highest levels of tocopherols, regardless of the dose applied. Finally, with regard to the fatty acids content, the irradiated samples showed higher percentages of monounsaturated fatty acids than the control samples. In general, analyzing the results taking into account the effects described, it can be concluded that the application of irradiation with electron beam at doses 1 and 10 kGy is an effective way to retain biomolecules profile of the studied species.
Resumo:
In recent years the interest in naturally occurring compounds has been increasing worldwide. Indeed, many of the bioactive compounds currently used as medicines have been synthesized based on the structure of natural compounds [1]. In order to obtain bioactive fractions and subsequently isolated compounds derived from natural matrices, several procedures have been carried out. One of these is to separate and assess the concentration of the active compound(s) present in the samples, a step in which the chromatographic techniques stand out [2]. In the present work the mushroom Sui/Ius granulatus (L.) Roussel was chemically characterized by chromatographic techniques coupled to different detectors, in order to evaluate the presence of nutritional and/or bioactive molecules. Some hydrophilic compounds, namely free sugars, were identified by high performance liquid chromatography coupled to a refraction index detector (HPLC-RI), and organic and phenolic acids were assessed by HPLC coupled to a photodiode array detector (HPLC-PDA). Regarding lipophilic compounds, fatty acids weredetermined by gas chromatography with a flame ionization detector (GC-FID) and tocopherols by HPLC-fluorescence detection. Mannitol and trehalose were the main free sugars detected. Different organic acids were also identified (i.e. oxalic, quinic and fumaric acids), as well as phenolic acids (i.e. gallic and p-hydroxybenzoic acids) and the related compound cinnamic acid. Mono- and polyunsaturated fatty acids were the prevailing fatty acids and a-, ~- and ~-tocopherol were the isoforms of vitamin E detected in the samples. Since this species proved to be a source of biologically active compounds, the antioxidant and antimicrobial properties were evaluated. The antioxidant activity was measured through the reducing power, free radical's scavenging activity and lipid peroxidation inhibition of its methanolic extract, and the antimicrobial activity was also tested in Gram positive and Gram negative bacteria and iri different fungi. S. granulatus presented antioxidant properties in all the performed assays, and proved to inhibit the growth of different bacterial and fungal strains. This study is a first step for classifying S. granulatus as a functional food, highlighting the potential of mushrooms as a source of nutraceutical and biologically active compounds.
Resumo:
Nowadays the rising cost of health care and pharmaceutical products, the increase in life expectancy as well as the demand for an improved quality of life, has led to an increased concern about food intake and an emergence of new concepts of nutrition [1]. Mushrooms have been pointed out as an excellent option to include in a healthy diet, due to their nutritional value [2] associated with their bioactive properties [3]. The current study presents the chemical profile of two edible species, Leccinum molle (Ban) Ban and Leccinum vulpinum Watling, harvested in the outskirts of Bragan9a (Northeastern Portugal), regarding their content in nutrients and nonnutrients. Individual profiles of sugars and fatty acids were obtained by HPLC-RI and GC-FID, respectively. Tocopherols were analysed by HPLC-fluorescence, and the non-nutrients (i.e., phenolic and other organic acids) by HPLC-PDA. The antioxidant activity of the methanolic extracts obtained from both species was assessed with different assays (e.g. reducing power, radical scavenging activity and lipid peroxidation inhibition) and their hepatotoxicity was evaluated in primary cell cultures obtained from porcine liver, PLP2. Generally, both Leccinum species revealed similar nutrient profiles, with low fat levels, fructose, mannitol and trehalose as the foremost free sugars, and higher percentages of mono- and polyunsaturated fatty acids in comparison with saturated fatty acids. The presence of bioactive compounds was also detected, namely phenolic (e.g., gallic, protocatechuic and p-hydroxybenzoic acids) and organic acids (e.g., citric and fumaric acids). Both species presented antioxidant properties, being L. vulpinum the species which showed the most promising results (higher contents of total phenolic acids and lower ECso values in all the performed assays). Neither of the extracts presented toxicity against the liver primary cells PLP2, up to maximal concentration tested (Giso > 400 μg/ml).
Resumo:
After harvest, plants remain living organisms with the capacity to carry out metabolic processes. Thus, from the moment they are detached from the source of nutrients, they become entirely dependent on their own organic reserves [1]. Postharvest changes cannot be stopped, but they can be slowed within certain limits. Therefore, this study was conducted to evaluate the effects induced by storage in the profiles of sugars, organic acids and tocopherols of two leafy vegetables. Wild samples of watercress (Nasturtium officinale R. Br.) and buckler sorrel (Rumex induratus Boiss. & Reut.), from the Northeastern region of Portugal, were analyzed after harvest (control) and after storage in sterilized packages (using the passive modification mode) at 4ºC for 7 or 12 days, respectively. Analyses were performed by high-performance liquid chromatography (HPLC) using different detectors, i.e., a refraction index detector (RID) for free sugars, a photodiode array detector (PDA) for organic acids, and a fluorescence (FP) detector for tocopherols. The storage time decreased the levels of fructose, glucose and total sugars in both leafy vegetables and increased the total organic acids content. The decrease of these sugars can be related to its use by the plant to produce the required energy. Ascorbic acid was detected in buckler sorrel and decreased with storage; while the amount of malic acid increased in both species. Curiously, all the tocopherol isoforms increased in watercress, while buckler sorrel just present higher values of γ- and δ- tocopherols. In fact, the de novo synthesis of these bioactives compounds can be a plant strategy to fight against the reactive species that are produced during storage. The knowledge of the behavior of these compounds during storage that was achieved with this study [2] may contribute to the development of more effective preservation strategies for leafy vegetables.