4 resultados para CATALYTIC BEACONS

em Instituto Politécnico de Bragança


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several motivations have prompted the scientific community towards the application of hybrid magnetic carbon nanocomposites in catalytic wet peroxide oxidation (CWPO) processes. The most relevant literature on this topic is reviewed, with a special focus on the synergies that can arise from the combination of highly active and magnetically separable iron species with the easily tuned properties of carbon-based materials. These are mainly ascribed to increased adsorptive interactions, to good structural stability and low leaching levels of the metal species, and to increased regeneration and dispersion of the active sites, which are promoted by the presence of the carbon-based materials in the composites. The most significant features of carbon materials that may be further explored in the design of improved hybrid magnetic catalysts are also addressed, taking into consideration the experimental knowledge gathered by the authors in their studies and development of carbon-based catalysts for CWPO. The presence of stable metal impurities, basic active sites and sulphur-containing functionalities, as well as high specific surface area, adequate porous texture, adsorptive interactions and structural defects, are shown to increase the activity of carbon materials when applied in CWPO, while the presence of acidic oxygen-containing functionalities has the opposite effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid magnetic graphitic nanocomposites (MGNC) prepared by inclusion of magnetite nanoparticles (obtained by coprecipitation) into an organic-organic self-assembly system, followed by calcination, revealed high activity for the catalytic wet peroxide oxidation (CWPO) of 4-nitrophenol solutions (5 g L-l), with pollutant removais up to 1245 mg g-' h-l being obtained when considering the mass ratio [pollutant]/[catalyst] =10. The stability of the MGNC catalyst against metal leaching was ascribed to the confinement effect of the carbon based material. These observations, together with the magnetically recoverable characteristics of MGNC, open new prospects for the wide use of this catalyst in highly efficient CWPO applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffraction pattern of Fe3O4 (not shown) confirmed the presence of only one phase, corresponding to magnetite with a lattice parameter a = 8.357 Å and a crystallite size of 16.6 ± 0.2 nm. The diffraction pattern of MGNC (not shown) confirmed the presence of a graphitic phase, in addition to the metal phase, suggesting that Fe3O4 nanoparticles were successfully encapsulated within a graphitic structure during the synthesis of MGNC. The core-shell structure of MGNC is unequivocally demonstrated in the TEM micrograph shown in Fig. 1b. Characterization of the MGNC textural and surface chemical properties revealed: (i) stability up to 400 oC under oxidizing atmosphere; (ii) 27.3 wt.% of ashes (corresponding to the mass fraction of Fe3O4); (iii) a micro-mesoporous structure with a fairly well developed specific surface area (SBET = 330 m2 g-1); and (iv) neutral character (pHPZC = 7.1). In addition, the magnetic nature of MGNC (Fig. 2) is an additional advantage for possible implementation of in situ magnetic separation systems for catalyst recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid magnetic carbon composites have been recently proposed as the next step in the evolution of catalysts for catalytic wet peroxide oxidation (CWPO), with several synergistic effects arising from the combination of the high catalytic activity of metal species with the proven catalytic properties of carbon-based materials in CWPO [1]. Bearing this in mind, this work sought the development of novel magnetic carbon xerogels, composed by interconnected carbon microspheres with iron (Fe) and/or cobalt (Co) microparticles embedded in their structure. As inferred from the extensive characterization performed, materials with distinctive properties were obtained upon inclusion of different metal precursors during the sol-gel polymerization of resorcinol and formaldehyde, followed by thermal annealing.