2 resultados para CANNED FOODS

em Instituto Politécnico de Bragança


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food irradiation is a treatment that involves subjecting in-bulk or packaged food to a controlled dose of ionizing radiation, with a clearly defined goal. It has been used for disinfestation and sanitization of food commodities and to retard postharvest ripening and senescence processes, being a sustainable alternative to chemical agents 1 . Doses up to 10 kGy are approved by several international authorities for not offering negative effects to food from a nutrition and toxicology point of view 2 . However, the adoption of this technology for food applications has been a slow process due to some misunderstandings by the consumer who often chooses non-irradiated foods. In this study, the effects of the ionizing radiation treatment on physical, chemical and bioactive properties of dried herbs and its suitability for preserving quality attributes of fresh vegetables during cold storage were evaluated. The studied herbs, perennial spotted rockrose (Tuberaria lignosa (Sweet) Samp.) and common mallow (Malva neglecta Wallr.) were freeze-dried and then irradiated up to 10 kGy in a Cobalt-60 chamber. The selected vegetables, watercress (Nasturtium officinale R. Br.) and buckler sorrel (Rumex induratus Boiss. Reut.) were rinsed in tap water, packaged in polyethylene bags, submitted to irradiation doses up to 6 kGy and then were stored at 4 C for a period of up to 12 days. Physical, chemical and bioactive parameters of irradiated and non-irradiated samples were evaluated using different methodologies the colour was measured with a colorimeter, individual chemical compounds were analyzed by chromatographic techniques, antioxidant properties were evaluated using in vitro assays based on different reaction mechanisms, and other quality analyses were performed following official methods of analysis. The irradiation treatment did not significantly affect the colour of the perennial spotted rockrose samples, or its phenolic composition and antioxidant activity 3 . Medium doses preserved the colour of common mallow and a low dose did not induce any adverse effect in the organic acids profile. The green colour of the irradiated vegetables was maintained during cold storage but the treatment had pros and cons in other quality attributes. The 2 kGy dose preserved free sugars and favoured polyunsaturated fatty acids (PUFA) while the 5 kGy dose favoured tocopherols and preserved the antioxidant properties in watercress samples. The 6 kGy dose was a suitable option for preserving PUFA and the ω-6 ω-3 fatty acids ratio in buckler sorrel samples. This comprehensive experimental work allowed selecting appropriate processing doses for the studied plant foods in order to preserve its quality attributes and edibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, many consumers search for food with functional characteristics beyond their nutritional properties. Thus, the concept of functional food becomes a hot topic, allowing the obtaining of health benefits, including disease prevention. In this context, plants are recognized as sources of a wide range of bioactives, mainly phenolic compounds. In particular, the Rosmarinus officina/is L., commonly referred as rosemary, has several phenolic compounds with different bioactive properties such as antioxidant, antiinflammatory and antimicrobial activities, among others [!]. Hence, this plant has great potential for incorporation into foods in order to confer bioactivity to the final products. However, it should be highlighted that the bioactive compounds if exposed to adverse environments, for example: light, moisture, extreme pH, storage, food processing conditions, can be degraded leading to the consequent loss of bioactivity [2]. The microencapsulation is an alternative to overcome this problematic of bioactive compounds, as also to ensure controlled release, or target deliver to a specific site [3]. In this work, lyophilized rosemary aqueous extract prepared by in:'usion was used as a functional ingredient for cottage cheeses, after proving that it possesses, both higher content in phenolic compounds and higher antioxidant activity, comparatively with the corresponding hydroethanolic extract. The rosemary aqueous extract revealed, for example, a DPPH scavenging activity with an EC50 value of 73.44±0.54j!g/mL and presented as main phenolic compound the caffeic acid dimer, commonly named as rosmarinic acid. For the functionalized cottage cheeses, a decrease of bioactivity was observed after seven days under storage in fridge, when the extracts were incorporated in its free form. Therefore, to preserve the antioxidant activity, the rosemary aqueous extract was efficiently microencapsulated by using an atomization/coagulation technique and alginate as the matrix material and thereafter incorporated into the cottage cheeses. The final microspheres showed a size, estimated by OM using a magnification of I OOx, ranging between 51.1 and 122.6 J!m and an encapsulation efficiency, estimated through an indirect method, approaching 100%. Overall, the introduction of both free and microencapsulated extracts did not change the nutritional value of cottage cheeses, providing bioactivity that was more preserved with microencapsulated extracts putting in evidence the importance of using microencapsulation to develop effective functional foods.