4 resultados para Ast-87084
em Instituto Politécnico de Bragança
Resumo:
Aiming at the evaluation of the impact of the ionic liquids (ILs) cation symmetry on their phase behaviour, in this work, novel mutual solubilities with water of the symmetric series of [C(n)C(n)im][NTf2] (with n=1-5) were determined and compared with their isomeric forms of the asymmetric [C(n)C(1)im][NTf2] group. While the solubility of isomeric ILs in water was found to be similar, the solubility of water in ILs follows the same trend up to a maximum cation alkyl side chain length. For n >= 4 in [C(n)C(n)im][NTf2] the solubility of water in the asymmetric ILs is slightly higher than that observed in the symmetric counterparts. The thermodynamic properties of solution and solvation derived from the experimental solubility data of ILs in water at infinite dilution, namely the Gibbs energy, enthalpy and entropy were used to evaluate the cation symmetry effect on the ILs solvation. It is shown that the solubility of ILs in water is entropically driven and highly influenced by the cation size. Accordingly, it was found that the ILs solubility in water of both symmetric and asymmetric series depends on their molecular volume. Based on these findings, a linear correlation between the logarithm of the solubility of ILs in water and their molar volume is here proposed for the [NTf2]-based ILs at a fixed temperature.
Resumo:
The knowledge of the liquid-liquid equilibria (LLE) between ionic liquids (ILs) and water is of utmost importance for environmental monitoring, process design and optimization. Therefore, in this work, the mutual solubilities with water, for the ILs combining the 1-methylimidazolium, [C(1)im](+); 1-ethylimidazolium, [C(2)im](+); 1-ethyl-3-propylimidazolium, [C(2)C(3)im](+); and 1-butyl-2,3-dimethylimidazolium, [C(4)C(1)C(1)im](+) cations with the bis(trifluoromethylsulfonyl)imide anion, were determined and compared with the isomers of the symmetric 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ([C(n)C(n)im][NTf2], with n=1-3) and of the asymmetric 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(n)C(1)im][NTf2], with n = 2-5) series of ILs. The results obtained provide a broad picture of the impact of the IL cation structural isomerism, including the number of alkyl side chains at the cation, on the water-IL mutual solubilities. Despite the hydrophobic behaviour associated to the [NTf2](-) anion, the results show a significant solubility of water in the IL-rich phase, while the solubility of ILs in the water-rich phase is much lower. The thermodynamic properties of solution indicate that the solubility of ILs in water is entropically driven and highly influenced by the cation size. Using the results obtained here in addition to literature data, a correlation between the solubility of [NTf2]-based ILs in water and their molar volume, for a large range of cations, is proposed. The COnductor like Screening MOdel for Real Solvents (COSMO-RS) was also used to estimate the LLE of the investigated systems and proved to be a useful predictive tool for the a priori screening of ILs aiming at finding suitable candidates before extensive experimental measurements.
Resumo:
In this work, ionic liquids are evaluated for the first time as solvents for extraction and entrainers in separation processes involving terpenes and terpenoids. For that purpose, activity coefficients at infinite dilution, γ13 ∞, of terpenes and terpenoids, in the ionic liquids [C4mim]Cl, [C4mim][CH3SO3], [C4mim][(CH3)2PO4] and [C4mim][CF3SO3] were determined by gas−liquid chromatography at six temperatures in the range 398.15 to 448.15 K. On the basis of the experimental values, a correlation of γ13 ∞ with an increase of the solubility parameters is proposed. The infinite dilution thermodynamic functions were calculated showing the entropic effect is dominant over the enthalpic. Gas−liquid partition coefficients give indications about the recovery and purification of terpenes and terpenoids from ionic liquid solutions. Presenting a strong innovative character, COSMO-RS was evaluated for the description of the selectivities and capacities, showing to be a useful tool for the screening of ionic liquids in order to find suitable candidates for terpenes and terpenoids extraction, and separation. COSMO-RS predictions show that in order to achieve the maximum separation efficiency, polar anions should be used such as bis(2,4,4-trimethylpentyl)phosphinate or acetate, whereas high capacities require nonpolar cations such as phosphonium.
Resumo:
N-(diethylaminothiocarbonyl)benzimido derivatives are polar multifunctional substances. A set of these compounds was synthesised by successive substitution on the enamine side, resulting in similar substances with different polarities, providing a set of model compounds with respect to the study of substituent effects on physico-chemical properties. Experimental aqueous solubility data, at T = 298.15 K, of N-(diethylaminothiocarbonyl)benzamidine, PhCNH2NCSNEt2 (1),N-(diethylaminothiocarbonyl)-N'-phenylbenzamidine, PhCNHPhNCSNEt2 (2), N-(diethylaminothiocarbonyl)-N'-monoethylbenzamidine, PhCNHEtNCSNEt2 (3), N-(diethylaminothiocarbonyl)-N',N'-diethylbenzamidine, PhCNEt2NCSNEt2 (4), and N-(diethylaminothiocarbonyl)benzimido ethylester, PhCOEtNCSNEt2 (5) were measured at T = 298.15 K. The obtained data are supplemented by COSMO-RS aqueous solubility predictions as well as other environmentally important partition coefficients. This information is shown in a two-dimensional chemical space diagram, providing indications about the compartment into which the bulk of the compounds is likely to concentrate. The expected quality of COSMO-RS predictions for this type of screening exercise is illustrated on a set of pesticides with established thermophysical property data.