5 resultados para Aspergillus clavatus
em Instituto Politécnico de Bragança
Resumo:
Processed meat products are of worldwide importance and, because of their intrinsic factors as well as the processing methods, they are highly prone to fungal and mycotoxin contamination. Ochratoxin A (OTA) is the most significant mycotoxin in processed meat products. Penicillium nordicum is considered to be responsible for OTA contamination of meat products, as it is highly adapted to salt and protein-rich matrices and is moderately psycrotrophic. However, another OTA-producing fungus, Aspergillus westerdijkiae, adapted to carbon-rich matrices such as cereals and coffee beans, has been recently associated with high levels of OTA in meat products. Several Lactic Acid Bacteria (LAB) and yeasts have been tested as biocontrol agents against P. nordicum growth and OTA production in meat products, with promising results, but none of the studies have considered A. westerdijkiae. The aim of this work was to evaluate in vitro the effect of a commercial starter culture used in sausage fermentation and four yeasts isolated from dry-cured sausage on these two OTA-producing fungi, both in terms of fungal growth and of OTA production, using different meat-based culture media as model systems. The mechanisms underlying the observed effect were also studied. For this purpose, C. krusei, C. zeylanoides, R. mucilaginosa, R. glutinis, a mix of these yeasts and the starter culture were co-inoculated with P. nordicum and A. westerdijkiae in industrial sausage, traditional sausage, and ham-based media, under conditions of water activity, salt concentration and temperature that mimic real conditions at beginning and end of sausage curing process. Fungal growth was determined by measuring colony diameter, and OTA production was quantified by HPLC-FLD after extraction with methanol. Yeasts where found to inhibit significantly the growth of both fungi. P. nordicum was unable to produce detectable OTA in both sausage-based media under any condition. In ham, yeasts reduced OTA production, while the starter culture significantly increased it. Unexpectedly, OTA production by A. westerdijkiae was significantly stimulated in all media tested by all microorganisms. Matrix has a significant effect on OTA production by P. nordicum, but not by A. westerdijkiae, for which only temperature showed to have effect. By testing the mechanisms of action by which starter culture and C. zeylanoides influenced fungal responses, we were able to determine that direct contact and simultaneous growth of test organisms were the mechanisms more significantly involved in the responses. In conclusion, ochratoxigenic fungi do not all respond to antagonistic microorganisms in the same way. The use of biocontrol agents with the intent of reducing fungal growth and mycotoxin production by one fungus can have unexpected effects on others, thus leading to unforeseen safety problems. Further experiments are recommended to properly understand the reasons behind the different effects of microorganisms, to ensure their safe as biocontrol agents.
Resumo:
Among the wide variety of materials employed in the manufacture of shoes, thermoplastic polyurethanes (TPUs) are one of the most widely used. Given its widespread use, and associated waste management problems, the development of more biodegradable and evironmentally compatible solutions is needed. In this work, a polyester-based TPU used in the footwear industry for outsoles production was modified by compounding with lignin, starch and cellulose at content of 4% (w/w). The biodegradability was evaluated by using agar plate tests with the fungi Aspergillus niger ATCC16404, the Gram-negative bacteria Pseudomonas aeruginosa ATCC9027 and an association of both (consortium), and soil tests at 37 °C and 58 °C. The obtained results evidenced a positive effect of the tested biobased additives, the most favourable results being registered with lignin. These results were corroborated by the structural modifications observed by FTIR analysis. Additionally, mechanical tests prove the suitability of using the lignin modified TPUs for footwear outsoles production.
Resumo:
Synthetic additives used in a wide variety of food products have been associated to some toxic effects. This conducted to an increasing interest of consumers for natural additives, including food preservers [1]. Many aromatic herbs have been used to prepare bioactive extracts with benefits to the consumer's health. Foeniculum vulgare Mill. (fennel) and Matricaria recutita L. (chamomile) are examples of popular herbs rich in phenolic compounds with documented antioxidant and antimicrobial properties [2,3]. The present work confirms the antioxidant (DPPH scavenging activity, reducing power and lipid peroxidation inhibition) and antimicrobial (against bacteria such as Bacillus cereus and Salmonella Typhimurium and fungi such as Aspergillus niger, A. versicolor and PenicilliumfimicuJosum) activities of fennel and chamomile extracts, obtained by decoction. The chemical characterization of the extracts, performed by HPLC-DAD-ESIIMS, revealed the presence of five flavonoids (mainly qercetin-3-0- glucoside) and twelve phenolic acids (mainly 5-0-caffeolyquinic acid) for fennel extract and the presence of nine flavonoids (mainly luteolin-0-glucuronide) and ten phenolic acids (mainly di-caffeoyl-2,7- anhydro-3-deoxy-2-octulopyranosonic acid) for chamomile extract. Due to their high antioxidant and antimicrobial activities, both extracts were then incorporated (at DPPH scavenging activity EC25 value: 0.35 mg/mL and 0.165 mg/mL for fennel and chamomile, respectively) in cottage cheeses (prepared by Queijos Casa Matias Lda) as natural additives with two objectives: to increase the shelf-life of the cottage cheeses and to provide bioactive properties to the final products. The results showed that the use of these natural extracts did not alter significantly the nutritional characteristics of the cottage cheese in comparison with control samples (cottage cheese without extracts), but improved its antioxidant potential (more evident in the samples with chamomile extract). After 14 days of storage, only the control samples showed signs of degradation. Overall, the present study highlights the preservation potential of fennel and chamomile extracts in cottage cheeses, improving also their bioactivity.
Resumo:
Atualmente, existe uma grande procura de alimentos com ingredientes naturais em substituição de aditivos sintéticos que têm sido associados, em determinadas circunstâncias, a alguns efeitos tóxicos [1]. Neste trabalho, preparou-se um extrato aquoso por decocção de Foeniculum vulgare Mill. (funcho) que, após caracterização por HPLC-DAD-ESI/MS, revelou a presença de cinco flavonoides (sendo o maioritário o quercetin-3-O-glucósido) e doze ácidos fenólicos (sendo o maioritário o ácido 5-Ocafeoilquínico). O mesmo extrato revelou um enorme potencial antioxidante (efeito captador de radicais livres DPPH, poder redutor e inibição da peroxidação lipídica) e antimicrobiano (contra bactérias como Salmonella typhimurium e Bacillus cereus, e fungos como Aspergillus niger, A. versicolor e Penicillium funiculosum), o que suscitou o seu potencial de utilização como ingrediente bioativo na funcionalização de alimentos. Assim, procedeu-se à sua incorporação (atendendo ao EC25 =0,35 mg/mL obtido no ensaio de DPPH) em requeijões (preparados na empresa Queijos Casa Matias Lda.). Os resultados mostraram que a presença do extrato não alterou significativamente as características nutricionais (incluindo macronutrientes, valor energético e perfil em ácidos gordos) das amostras controlo (requeijão sem esse ingrediente), no entanto parece aumentar o amarelecimento (parâmetro da cor, b*) após 7 dias de armazenamento. Verificou-se ainda que, após duas semanas de armazenamento apenas as amostras controlo apresentaram sinais de degradação. Além disso, conseguiu-se provar que a incorporação do extrato de funcho conferiu propriedades antioxidantes ao requeijão. Os resultados obtidos provam assim que o extrato fenólico obtido através da decocção de funcho pode ser utilizado como conservante e agente bioativo natural em requeijões.
Resumo:
Opuntia spp. flowers have been traditionally used for medical purposes, mostly because of their diversity in bioactive molecules with health promoting properties. The proximate, mineral and volatile compound profiles, together with the cytotoxic and antimicrobial properties were characterized in O. microdasys flowers at different maturity stages, revealing several statistically significant differences. O. microdasys stood out mainly for its high contents of dietary fiber, potassium and camphor, and its high activities against HCT15 cells, Staphylococcus aureus, Aspergillus versicolor and Penicillium funiculosum. The vegetative stage showed the highest cytotoxic and antifungal activities, whilst the full flowering stage was particularly active against bacterial species. The complete dataset has been classified by principal component analysis, achieving clearly identifiable groups for each flowering stage, elucidating also the most distinctive features, and comprehensively profiling each of the assayed stages. The results might be useful to define the best flowering stage considering practical application purposes.