10 resultados para AQUEOUS SOLUTIONS

em Instituto Politécnico de Bragança


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, the partial molar volumes of L-serine and L-threonine in aqueous solutions of ammonium sulfate at (0.0, 0.1, 0.3, 0.7, and 1.0) mol.kg(-1) are reported between 278.15 and 308.15 K. Transfer volumes and hydration numbers were obtained, which are larger in L-serine than in L-threonine. Dehydration of the amino acids is observed, rising with the temperature and salt molality. The data suggest that interactions between ions and charged/hydrophilic groups are predominant, and by applying the McMillan and Mayer formalism, it was concluded that they are mainly pair wise. The combination of the data presented in this study with solubility and molecular dynamics data suggests a stronger interaction of the ammonium cation with the zwitterionic centers of the amino acids when compared to the interactions of those centers with the sulfate anion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the partial molar volumes of glycine and DL-alanine in aqueous solutions of ammonium sulfate at 0.0, 0.1, 0.3, 0.7, and 1.0 mol.kg(-1) are determined between 278.15 and 308.15 K. Transfer volumes were obtained, which are larger for glycine than DL-alanine. On the contrary, the hydration numbers are higher for DL-alanine than glycine, and dehydration of the amino acids is observed with increasing temperature or salt molality. The data suggest that interactions between ion and charged/hydrophilic groups are predominant and, by applying the methodology proposed by Friedman and Krishnan, it was concluded that they are mainly pairwise. A group-contribution scheme has been successfully applied to the pairwise volumetric interaction coefficient. Finally, the dehydration effect on glycine, alanine and serine in the presence of different electrolytes has been rationalized in terms of the charge density and a parameter accounting for the cation's hydration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water activity in aqueous solutions of DL-alanine, glycine, or L-serine, with ammonium sulfate, molality ranging from 0.5 to 5.0, have been measured at 298.2 K. The new experimental data was correlated using three different theoretical schemes such as Zdanovskii-Stokes-Robinson, its extension, or the Clegg-Seinfeld-Brimblecombe approach, with global average absolute deviations in the calculation of the osmotic coefficient of 3.46 %, 0.93 % and 1.95 %, respectively. The extended Zdanovskii-Stokes-Robinson method also enabled the prediction of unsymmetric molal activity coefficients of the electrolyte, in fair agreement with the experimental values found from literature measured by an electrochemical method. It is evidenced the usefulness of the experimental ternary data measured to extend the capabilities of thermodynamic models to higher salt and amino acid concentrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the partial molar volumes of glycine, l-alanine, l-valine, l-serine, and l-threonine in aqueous solutions of magnesium chloride at 0.0, 0.1, 0.3, 0.7, and 1.0 molal are addressed between 278.15 and 308.15 K. Volumes of transfer were obtained, following the rank serine > glycine a parts per thousand threonine > alanine > valine. Differently, the hydration numbers follow the sequence serine > valine > alanine > threonine > glycine, and dehydration of the amino acids is observed, rising the temperature or salt molality. The data suggest that interactions are mainly pairwise, between the ions and charged/hydrophilic groups of the amino acids. Within the Friedman and Krishnan formalism, a group-contribution scheme has been successfully applied to the pairwise volumetric interaction coefficient. Finally, the dehydration effect of MgCl2 on glycine, alanine, and serine has been predicted applying empirical correlations developed before, showing satisfactory results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The interactions established by mono and polyvalent cations in natural media have important implications on the structure formation, function and physico-chemical behavior of biomolecules, playing therefore a critical role in biochemical processes. In order to further elucidate the molecular phenomena behind the cation specific effects in biological environments, and clarify the influence of the charge of the ions, solubility measurements and molecular dynamics simulations were performed for aqueous solutions of three amino acids (alanine, valine and isoleucine), in the presence of a series of inorganic salts comprising mono-, di- and trivalent cations (LiCl, Li2SO4, K2SO4, CaCl2, AlCl3 and Al-2(SO4)(3)). The evidence gathered indicates that the mechanism by which (salting-in inducing) polyvalent cations affect the solubility of amino acids in aqueous solutions is different from that of monovalent cations. A consistent and refined molecular description of the effect of the cation on the solubility of amino acids based on specific interactions of the cations with the negatively charged moieties of the biomolecules is here proposed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The solvation of cyano- (CN-) based ionic liquids (ILs) and their capacity to establish hydrogen bonds (H-bonds) with water was studied by means of experimental and computational approaches. Experimentally, water activity data were measured for aqueous solutions of ILs based on 1-butyl-3-methylimidazolium ([BMIM](+)) cation combined with one of the following anions: thiocyanate ([SCN](-)), dicyanamide ([DCA](-)), or tricyanomethanide ([TCM](-)), and of 1-ethyl-3-methylimidazolium tetracyanoborate ([EMIM][TCB]). From the latter data, water activity coefficients were estimated showing that [BMIM][SCN] and [BMIM][DCA], unlike [BMIM][TCM] and [EMIM][TCB], are able to establish favorable interactions with water. Computationally, the conductor like screening model for real solvents (COSMO-RS) was used to estimate the water activity coefficients which compare well with the experimental ones. From the COSMO-RS results, it is suggested that the polarity of each ion composing the ILs has a strong effect on the solvation phenomena. Furthermore, classical molecular dynamics (MD) simulations were performed for obtaining an atomic level picture of the local molecular neighborhood of the different species. From the experimental and computational data it is showed that increasing the number of CN groups in the ILs' anions does not enhance their ability to establish H-bonds with water but decreases their polarities, being [BMIM][DCA] and [BMIM][SCN] the ones presenting higher propensity to interact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crude glycerol, obtained from the biodiesel production, is actually an abundant and low-cost feedstock, making the preparation of carbonaceous materials by partial carbonization and sulfonation of this by-product an interesting research focus. Bearing this in mind, the aim of this study is to explore several types of glycerol-based carbon materials synthesized by partial carbonization of glycerol in concentrated sulphuric acid solution for the removal of flumequine and tetracycline from aqueous solutions. This study is focused on the synthesis and application of glycerol-based carbon materials as adsorbents for the removal of the antibiotic compounds flumequine and tetracycline from aqueous solution. The different synthesized materials were labelled as GBCM followed by a subscript number corresponding to the activation temperature in oC (i.e., GBCM200, GBCM300, and GBCM350)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cork boiling water is an aqueous and complex dark liquor with high concentration of phenolic compounds such as phenolic acids and tannins [1, 2], which are considered biorecalcitrants [2]. Ionizing radiation has been widely studied as an alternative technology for the degradation of organic contaminants without the addition of any other (e.g.: Fenton technologies). The aim of this work was to identify the compounds present in cork boiling water and further evaluate the resulting stable degradation products after gamma irradiation. The irradiation experiments of standard solutions were carried out at room temperature using a Co-60 experimental equipment. The applied absorbed doses were 20 and 50 kGy at a dose rate of 1.5 kGy/h, determined by routine dosimeters [3]. The identification of radiolytic products was carried out by HPLC-DAD-ESI/MS. The phenolic compounds were identified by comparing their retention times and UV–vis and mass spectra with those obtained from standard compounds, when available, as well as by comparing the obtained information with available data reported in the literature. Concerning the obtained results and the literature review, the main cork wastewater components are: quinic, gallic, protocatechuic, vanillic, syringic and ellagic acids. Based on this, we used protocatechuic, vanillic and syringic acids as model compounds to study their degradation by gamma radiation in order to identify the corresponding radiolytic products. Standard aqueous solutions were irradiated and the derivatives of each model compound are represented in figure 1. The obtained results seem to demonstrate that the derivatives of the parent compounds could also be phenolic acids, since it was observed the loss of 44 u (CO2) from the [M-H]- ions. Gallic and protocatechuic acids are identified as derivatives of vanillic and syringic acids, and gallic acid as a protocatechuic acid derivative. Compound 5 ([M-H]- at m/z 169) was tentatively identified as 2,4,6-trihydroxybenzoic acid, since its fragmentation pattern (m/z 151, 125 and 107) is similar to that previously reported in literature [4]. The structure of compound 7 was proposed based on the molecular ion and its fragmentation and compound 6 remains unknown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Na indústria têxtil grandes volumes de efluentes são gerados, os quais são caracterizados por serem coloridos e poluentes , devido à presença de corantes em sua composição. Com a necessidade de descontaminação, diferentes métodos são utilizados no tratamento, sendo um deles, a biossorção. Este consiste na remoção das substâncias tóxicas recorrendo a biossorventes obtidos a partir de resíduos agrícolas e sub-produtos de processos industriais. O objetivo principal deste trabalho foi estudar a remoção do corante Preto Reafix Super 2R em soluções aquosas por meio de biossorção com bagaço de malte. Baseando-se sobretudo no estudo da cinética e equilíbrio entre o biossorvente e o corante. Numa primeira fase foi estudada a influência dos parâmetros operacionais, como a influência do diâmetro médio das partículas do biossorvente, o pH da solução e a velocidade de agitação da solução. Sendo as condições ótimas de biossorção definidas a pH 2, velocidade de agitação de 150 rpm e biomassa sem peneiramento. Posteriormente, ajustaram-se os modelos cinéticos de Pseudo-primeira ordem, Pseudo-segunda ordem e de Difusão intrapartícula aos resultados experimentais obtidos pela cinética de adsorção avaliando também a influência da temperatura no tempo de contato para se alcançar o equilibrio. O modelo de Pseudo-segunda ordem conduziu ao melhor ajuste, com um coeficiente de correlação (R2) de apróximadamente 1. A partir dos testes de equilíbrio realizados com diferentes concentrações de corante, foram ajustadas as isotermas de Langmuir, Freundlich, Tempkin aos resultados experimentais tendo-se obtido parâmetros bastante significativos para o modelo Langmuir, cuja capacidade máxima de remoção (qmax) obtida foi de 40,16 mg.g-1. A análise dos parâmetros termodinâmicos permitiram avaliar que o processo de adsorção ocorre espontaneamente, sendo endotérmico e que ao longo do processo aumenta a aleatoriedade na interface sólido/solução, devido à desorganização do processo em virtude das interações que ocorrem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objectives of this work are the measurement of terpenes solubility in water at different temperatures, and the formulation of Deep Eutectic Solvents based on choline chloride and polycarboxylic acids, that can be used as hydrotropes of aqueous solutions in terpenes, replacing conventional organic solvents. In this work a new experimental methodology was implemented, using dialysis membranes, for the measurement of terpenes solubility in water. Concerning the deep eutectic diagrams formulation, the determination of the melting points of the eutectic mixtures was performed using a visual method. The method used for determining solubilities was previously validated using a well-studied model compound, toluene. The experimental results of terpenes solubilities in water resulted in a very satisfactory coefficients of variation, always below 6%. The experimental solubility data were analysed and the temperature dependence is also studied in a thermodynamic perspective. The compound with the largest solubility dependence with the temperature is geraniol, while thymol presents the smallest. The phase diagrams of DES formulated were quite satisfactory, presenting always eutectic points below to 373.15 K. For some compositions, the systems composed by choline chloride and lactic, or malonic, or myristic acid were liquid at room temperature. In the case of monocarboxylic acids, eutectic is formed at 60% mol of the acid, to dicarboxylic acid is formed at 50% mol of the acid and for tricarboxylic acid these point is formed at 30% mol of the acid. In the future, it will be important to study the effect of DES as hydrotropes in aqueous solutions of terpenes. Furthermore, it would be interesting to study more terpenes in order to assess the effect of the size of the alkyl chain and the structures of the compounds.