1 resultado para ALZHEIMER-DISEASE
em Instituto Politécnico de Bragança
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberdeen University (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (12)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (11)
- Aston University Research Archive (124)
- B-Digital - Universidade Fernando Pessoa - Portugal (2)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (49)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (8)
- Centro Hospitalar do Porto (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (3)
- Cochin University of Science & Technology (CUSAT), India (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (3)
- Digital Commons @ Winthrop University (2)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (9)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (8)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (3)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (86)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (156)
- Queensland University of Technology - ePrints Archive (31)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (84)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo Uruguai (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (5)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Université de Lausanne, Switzerland (8)
- Université de Montréal (3)
- Université de Montréal, Canada (22)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (10)
- University of Queensland eSpace - Australia (42)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Alzheimer's disease (AD) represents one ofthe greatest public health challenges worldwide nowadays, because it affects millions of people ali o ver the world and it is expected that the disease will increase considerably in the near future. This study is the first application attempt of cepstral analysis on Electroencephalogram (EEG) signals to find new parameters in arder to achieve a better differentiation belween EEGs of AD patients and Control subjects. The results show that the methodology that uses a combined Wavelet (WT) Biorthogonal (Bior) 3.5 and cepstrum analysis was able to describe the EEG dynamics with a higher discriminative power than the other WTs/spectmm methodologies m previous studies. The most important significance figures were found in cepstral distances between cepstrums oftheta and alpha bands (p=0. 00006<0. 05).