3 resultados para INTERPLAY
em Reposit
Resumo:
The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.
Resumo:
Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined 'quantum boxes'. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on-but is not limited to-the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.
Resumo:
Context: Bariatric surgery often results in remission of the diabetic state in obese patients. Increased incretin effect seems to play an important role in the glycemic improvements after Roux-en-Y gastric bypass, but the impact of biliopancreatic diversion (BPD) remains unexplored. Objective: To elucidate the effect of BPD on the incretin effect and its interplay with beta-cell function and insulin sensitivity (IS) in obese subjects with type 2 diabetes (T2DM). Design, Setting and Patients: Twenty-three women were studied: a control group of 13 lean, normal glucose-tolerant women (lean NGT) studied once and 10 obese patients with T2DM studied before, 1 and 12 months after BPD. Intervention: The ObeseT2DM group underwent BPD. Main Outcome Measures: The change in incretin effect as measured by the isoglycemic intravenous glucose infusion test. Secondary outcomes encompassed IS and beta-cell function. Results: At baseline, the incretin effect was lower in obese T2DM compared to lean NGT (p<0.05). One month after BPD, the incretin effect was not changed, but at 12 months it reached the level of the lean NGT group (p>0.05). IS improved (p<0.05) 1 month after BPD and at 12 months it resembled the levels of the lean NGT group. Insulin secretory rate and beta-cell glucose sensitivity increased after BPD and achieved levels similar to lean NGT group 1 month after BPD and even higher levels at 12 months (p<0.05). Conclusions: BPD has no acute impact on the reduced incretin effect, but 12 months after surgery the incretin effect normalizes alongside normalization of glucose control, IS and beta-cell function.