6 resultados para FREEZE-DRYING MICROSCOPY
em Reposit
Resumo:
The aim of this study was to evaluate the effectiveness of 17% ethylene-diamine-tetra-acetic acid (EDTA) used alone or associated with 2% chlorhexidine gel (CHX) on intracanal medications (ICM) removal. Sixty single-rooted human teeth with fully formed apex were selected. The cervical and middle thirds of each canal were prepared with Gates Glidden drills and rotary files. The apical third was shaped with hand files. The specimens were randomly divided into two groups depending on the ICM used after instrumentation: calcium hydroxide Ca(OH)(2) +CHX or Ca(OH)(2) +sterile saline (SS). After seven days, each group was divided into subgroups according to the protocol used for ICM removal: instrumentation and irrigation either with EDTA, CHX+EDTA, or SS (control groups). All specimens were sectioned and processed for observation of the apical thirds by using scanning electron microscopy. Two calibrated evaluators attributed scores to each specimen. The differences between the protocols for ICM removal were analyzed with Kruskal-Wallis and Mann-Whitney U tests. Friedman and Wilcoxon signed rank tests were used for comparison between the score of debris obtained in each root canal third. Remains of Ca(OH)(2) were found in all specimens independently of the protocol and ICM used (P > 0.05). Seventeen percent EDTA showed the best results in removing ICM when used alone (P < 0.05), particularly in those associated with CHX. It was concluded that the chelating agent 17% EDTA significantly improved the removal of ICM when used alone. Furthermore, the type of the vehicle associated with Ca(OH)(2) also plays a role in the ICM removal.
Resumo:
To evaluate the influence of a fluorescent dye (rhodamine B) on the physical and mechanical properties of three different luting cements: a conventional adhesive luting cement (RelyX ARC, 3M/ESPE), a self-adhesive luting cement (RelyX U-200, 3M/ESPE), and a self-etching and self-adhesive luting cement (SeT PP, SDI). The cements were mixed with 0.03 wt% rhodamine B, formed into bar-shaped specimens (n = 10), and light cured using an LED curing unit (Radii, SDI) with a radiant exposure of 32 J/cm(2) . The Knoop hardness (KHN), flexural strength (FS), and Young's modulus (YM) analyses were evaluated after storage for 24 h. Outcomes were subjected to two-way ANOVA and Tukey's test (P = 0.05) for multiple comparisons. No significant differences in FS or YM were observed among the tested groups (P ≥ 0.05); the addition of rhodamine B increased the hardness of the luting cements tested. The addition of a fluorescent agent at 0.03 wt% concentration does not negatively affect the physical-mechanical properties of the luting cement polymerization behavior.
Resumo:
This study was aimed at spray drying hydrolysed casein using gum Arabic as the carrier agent, in order to decrease the bitter taste. Three formulations with differing proportions of hydrolysed casein: gum Arabic (10:90, 20:80 and 30:70) were prepared and characterized. They were evaluated for their moisture content, water activity, hygroscopicity, dispersibility in water and in oil, particle size and distribution, particle morphology, thermal behaviour (DSC) and bitter taste by a trained sensory panel using a paired-comparison test (free samples vs. spray dried samples). The proportion of hydrolysed casein did not affect the morphology of the microspheres. The spray drying process increased product stability and modified the dissolution time, but had no effect on the ability of the material to dissolve in either water or oil. The sensory tests showed that the spray drying process using gum Arabic as the carrier was efficient in attenuating or masking the bitter taste of the hydrolysed casein.
Resumo:
Several medical and dental schools have described their experience in the transition from conventional to digital microscopy in the teaching of general pathology and histology disciplines; however, this transitional process has scarcely been reported in the teaching of oral pathology. Therefore, the objective of the current study is to report the transition from conventional glass slide to virtual microscopy in oral pathology teaching, a unique experience in Latin America. An Aperio ScanScope® scanner was used to digitalize histological slides used in practical lectures of oral pathology. The challenges and benefits observed by the group of Professors from the Piracicaba Dental School (Brazil) are described and a questionnaire to evaluate the students' compliance to this new methodology was applied. An improvement in the classes was described by the Professors who mainly dealt with questions related to pathological changes instead of technical problems; also, a higher interaction with the students was described. The simplicity of the software used and the high quality of the virtual slides, requiring a smaller time to identify microscopic structures, were considered important for a better teaching process. Virtual microscopy used to teach oral pathology represents a useful educational methodology, with an excellent compliance of the dental students.
Resumo:
The durability of the cellulose-cement composites is a decisive factor to introduce such material in the market. Polymers have been used in concrete and mortar production to increase its durability. The goal of this work was the physical and mechanical characterization of cellulose-cement composites modified by a polymer and the subsequent durability evaluation. The work also evaluated the dispersion of acrylic polymer in composites made of Pinus caribaea residues. The physical properties observed were water absorption by immersion and bulk density. Rupture modulus and toughness were determined by flexural test. The specimens were obtained from pads, produced by pressing and wet curing. Samples were subjected to accelerated aging tests by repeated wetting and drying cycles and hot-water bath and natural aging. The scanning electron microscopy (SEM) allowed verifying the fiber and composite characteristics along the time. For the composite range analyzed, it was observed the polymer improved the mechanical properties of composites besides a significant decreasing in water absorption. The use of polymer improved the performance of vegetable fiber-cement composites when compared to the conventional mortar, due to water absorption decreasing.
Resumo:
It was done microencapsulation of natural essencial orange oil through spray-drying. The purpose was to use the best proportion of wall materials among maltodextrin, acacia gum, and modified starch (capsul) in order to retain greater amount of orange oil. The orange oil (10%) and maltodextrin (36%) remained constant. Three spray drying temperatures were employed: 180°C, 200°C and 220°C, therefore, nine final products were obtained. The superficial and inner oil concentrations were measured. The microcapsules were also examined through optical and scanning electron microscopy. The three temperatures employed did not affect the microencapsulation. The microstructure of the capsules were almost similar regardless the proportion employed among the carbohydrates to wall composition. At light microscopy it was observed a great heterogeneity of capsules diameters, and probably not smooth surfaces; at scanning electron microscopy it was clear that the walls displayed porosity over round surfaces. The best retention was given by the formula containing 10% of capsul, 10% of orange oil and 36% of maltodextrin, when total oil retention was 94%, regardless the drying temperature here employed.