8 resultados para wood feedstock
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Rhodotorula glutinis CCT 2182, Rhodosporidium toruloides CCT 0783, Rhodotorula minuta CCT 1751 and Lipomyces starkeyi DSM 70296 were evaluated for the conversion of sugars from Brazilian molasses into single-cell oil (SCO) feedstock for biodiesel. Pulsed fed-batch fermentations were performed in 1.65 l working volume bioreactors. The maximum specific growth rate (µmax), lipid productivity (Pr) and cellular lipid content were, respectively, 0.23 h(-1), 0.41 g l(-1) h(-1), and 41% for Rsp. toruloides; 0.20 h(-1), 0.27 g l(-1) h(-1), and 36% for Rta. glutinis; 0.115 h(-1), 0.135 g l(-1) h(-1), and 27 % for Rta. minuta; and 0.11 h(-1), 0.13 g l(-1) h(-1), and 32% for L. starkeyi. Based on their microbial lipid productivity, content, and profile, Rsp. toruloides and Rta. glutinis are promising candidates for biodiesel production from Brazilian molasses. All the oils from the yeasts were similar to the composition of plant oils (rapeseed and soybean) and could be used as raw material for biofuels, as well as in food and nutraceutical products.
Resumo:
• Microsatellite primers were designed for Piptadenia gonoacantha (Fabaceae) and characterized to estimate genetic diversity parameters. The species is a native tree from the Atlantic Forest biome commonly used in forest restoration; it has medicinal potential and the wood is economically useful. • Twenty-eight microsatellite loci were identified from an enriched genomic library. Fifteen loci resulted in successful amplifications and were characterized in a natural population of 94 individuals. Twelve loci were polymorphic, with allele numbers ranging from three to 15 per locus, and expected and observed heterozygosities ranging from 0.2142 to 0.8325 and 0.190 to 0.769, respectively. • The developed markers will be used in further studies of population genetics of P. gonoacantha, aimed at conservation and management of the species in natural populations and in forest restoration projects.
Resumo:
The development of technological routes to convert lignocellulosic biomass to liquid fuels requires an in-depth understanding of the cell wall architecture of substrates. Essential pretreatment processes are conducted to reduce biomass recalcitrance and usually increase the reactive surface area. Quantitative three-dimensional information about both bulk and surface structural features of substrates needs to be obtained to expand our knowledge of substrates. In this work, phase-contrast tomography (PCT) was used to gather information about the structure of a model lignocellulosic biomass (piassava fibers). The three-dimensional cellular organization of piassava fibers was characterized by PCT using synchrotron radiation. This technique enabled important physical features that describe the substrate piassava fibers to be visualized and quantified. The external surface area of a fiber and internal surface area of the pores in a fiber could be determined separately. More than 96% of the overall surface area available to enzymes was in the bulk substrate. The pore surface area and length exhibited a positive linear relationship, where the slope of this relationship depended on the plant tissue. We demonstrated that PCT is a powerful tool for the three-dimensional characterization of the cell wall features related to biomass recalcitrance. Original and relevant quantitative information about the structural features of the analyzed material were obtained. The data obtained by PCT can be used to improve processing routes to efficiently convert biomass feedstock into sugars.
Resumo:
Recently, to obtain lipids from microalgae has been the object of extensive research, since it is viewed as a promising feedstock for biodiesel production, especially when compared with crops such as soybean and sunflower, in terms of theoretical performance. The reduction of nutrient availability in culture media, especially nitrogen, stresses the microorganisms and affects cell growth, thus inducing lipid accumulation. This is an interesting step in biodiesel feedstock obtention from microalgae and should be better understood. In this study, four levels of nitrogen concentration in the BG-11 culture medium were evaluated in the growth of the chlorophycean microalga Desmodesmus sp. Both cell growth and lipid content were monitored over 7 days of cultivation, which yielded a final cell density of 33 × 10(6) cells mL(-1) with an initial NaNO3 concentration of 750 mg L(-1) in the medium and a maximum lipid content of 23 % with total nitrogen starvation. It was observed that the microalgae presented high lipid accumulation in the fourth day of cultivation with nitrogen starvation, although with moderate cell growth.
Resumo:
This study had as objective the evaluation of mechanical damages occurred in banana Nanicão during the improvement process, packing and distribution, identifying the probable critical points. The mechanical damages caused by transport, first cleaning; cleanness and sorting; preservation in the packing, transport, and mature were evaluated. The studied packing had been: torito wooden packing (18 kg), wood type ½ box, (13 kg) and cardboard (18 kg). The stage of preservation and transport of the fruits to the distribution center duplicated the light defects and quintupled the serious defects, causing rottenness after the acclimatization. The cardboard packing did not support the piling up and presented deformations, that resulted in the kneading the fruits of the inferior packing, causing a significant increase of the serious defects. The fruits conditioned in the involved packing of plastic bubble had presented an inferior number of serious damages when compared with the others packing, without the plastic.
Resumo:
Losses of horticulture product in Brazil are significant and among the main causes are the use of inappropriate boxes and the absence of a cold chain. A project for boxes is proposed, based on computer simulations, optimization and experimental validation, trying to minimize the amount of wood associated with structural and ergonomic aspects and the effective area of the openings. Three box prototypes were designed and built using straight laths with different configurations and areas of openings (54% and 36%). The cooling efficiency of Tommy Atkins mango (Mangifera Indica L.) was evaluated by determining the cooling time for fruit packed in the wood models and packed in the commercially used cardboard boxes, submitted to cooling in a forced-air system, at a temperature of 6ºC and average relative humidity of 85.4±2.1%. The Finite Element Method was applied, for the dimensioning and structural optimization of the model with the best behavior in relation to cooling. All wooden boxes with fruit underwent vibration testing for two hours (20 Hz). There was no significant difference in average cooling time in the wooden boxes (36.08±1.44 min); however, the difference was significant in comparison to the cardboard boxes (82.63±29.64 min). In the model chosen for structural optimization (36% effective area of openings and two side laths), the reduction in total volume of material was 60% and 83% in the cross section of the columns. There was no indication of mechanical damage in the fruit after undergoing the vibration test. Computer simulations and structural study may be used as a support tool for developing projects for boxes, with geometric, ergonomic and thermal criteria.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física