2 resultados para tea waste
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The aim of this study was to evaluate fat substitute in processing of sausages prepared with surimi of waste from piramutaba filleting. The formulation ingredients were mixed with the fat substitutes added according to a fractional planning 2(4-1), where the independent variables, manioc starch (Ms), hydrogenated soy fat (F), texturized soybean protein (Tsp) and carrageenan (Cg) were evaluated on the responses of pH, texture (Tx), raw batter stability (RBS) and water holding capacity (WHC) of the sausage. Fat substitutes were evaluated in 11 formulations and the results showed that the greatest effects on the responses were found to Ms, F and Cg, being eliminated from the formulation Tsp. To find the best formulation for processing piramutaba sausage was made a complete factorial planning of 2(3) to evaluate the concentrations of fat substitutes in an enlarged range. The optimum condition found for fat substitutes in the sausages formulation were carrageenan (0.51%), manioc starch (1.45%) and fat (1.2%).
Resumo:
In diabetes mellitus (DM), podocyte apoptosis leads to albuminuria and nephropathy progression. Low-density lipoprotein receptor-related protein 6 (LRP6) is WNT pathway receptor that is involved in podocyte death, adhesion and motility. Glycogen synthase kinase 3 (GSK3) interaction with p53 (GSK3-p53) promotes apoptosis in carcinoma cells. It is unknown if GSK3-p53 contributes to podocyte apoptosis in DM. In experimental DM, green tea (GT) reduces albuminuria by an unknown mechanism. In the present study, we assessed the role of the GSK3β-p53 in podocyte apoptosis and the effects of GT on these abnormalities. In diabetic spontaneously hypertensive rats (SHRs), GT prevents podocyte's p-LRP6 expression reduction, increased GSK3β-p53 and high p53 levels. In diabetic SHR rats, GT reduces podocyte apoptosis, foot process effacement and albuminuria. In immortalized mouse podocytes (iMPs), high glucose (HG), silencing RNA (siRNA) or blocking LRP6 (DKK-1) reduced p-LRP6 expression, leading to high GSK3β-p53, p53 expression, apoptosis and increased albumin influx. GSK3β blockade by BIO reduced GSK3β-p53 and podocyte apoptosis. In iMPs under HG, GT reduced apoptosis and the albumin influx by blocking GSK3β-p53 following the rise in p-LRP6 expression. These effects of GT were prevented by LRP6 siRNA or DKK-1. In conclusion, in DM, WNT inhibition, via LRP6, increases GSK3β-p53 and podocyte apoptosis. Maneuvers that inactivate GSK3β-p53, such as GT, may be renoprotective in DM.