2 resultados para stepwise selection to cefotaxime resistance

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane microdomains enriched in cholesterol, sphingolipids (rafts), and specific proteins are involved in important physiological functions. However their structure, size and stability are still controversial. Given that detergent-resistant membranes (DRMs) are in the liquid-ordered state and are rich in raft-like components, they might correspond to rafts at least to some extent. Here we monitor the lateral order of biological membranes by characterizing DRMs from erythrocytes obtained with Brij-98, Brij-58, and TX-100 at 4 °C and 37 °C. All DRMs were enriched in cholesterol and contained the raft markers flotillin-2 and stomatin. However, sphingomyelin (SM) was only found to be enriched in TX-100-DRMs - a detergent that preferentially solubilizes the membrane inner leaflet - while Band 3 was present solely in Brij-DRMs. Electron paramagnetic resonance spectra showed that the acyl chain packing of Brij-DRMs was lower than TX-100-DRMs, providing evidence of their diverse lipid composition. Fatty acid analysis revealed that the SM fraction of the DRMs was enriched in lignoceric acid, which should specifically contribute to the resistance of SM to detergents. These results indicate that lipids from the outer leaflet, particularly SM, are essential for the formation of the liquid-ordered phase of DRMs. At last, the differential solubilization process induced by Brij-98 and TX-100 was monitored using giant unilamellar vesicles. This study suggests that Brij and TX-100-DRMs reflect different degrees of lateral order of the membrane microdomains. Additionally, Brij DRMs are composed by both inner and outer leaflet components, making them more physiologically relevant than TX-100-DRMs to the studies of membrane rafts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sugarcane holds an important place in the Brazilian economy. Grate part of the sugarcane harvested still accomplished largely manually. Sugarcane harvesters available in Brazil use the technology to chop the cane into 200 to 300 mm billets to allow on the go cane transferring to transport, contradicting the traditional method of whole stalk sugarcane harvesting system. In order to make whole stalk mechanical harvesting system possible, one of the barriers to be expired is the mechanical removal of the straw. The design of a mechanism that accomplishes this operation depends directly on the knowledge of the mechanical properties of the sugarcane related to its resistance to compression and the forces necessary to remove the leaves from the stalk. Compression tests were conducted using the universal testing machine. For leaves removal test by friction, a special apparatus was designed to allow the registration of the normal and traction force. The sugarcane stalk can resist up to 4.9 MPa. With a normal pressure of 0.8 MPa, which correspond to a friction force of 315 N, it is possible to remove the leaves, independent of its location in the sugarcane stalk.