65 resultados para specific dynamic action
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Direct Visualization Of The Action Of Triton X-100 On Giant Vesicles Of Erythrocyte Membrane Lipids.
Resumo:
The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Basic phospholipases A2 (PLA2) are toxic and induce a wide spectrum of pharmacological effects, although the acidic enzyme types are not lethal or cause low lethality. Therefore, it is challenging to elucidate the mechanism of action of acidic phospholipases. This study used the acidic non-toxic Ba SpII RP4 PLA2 from Bothrops alternatus as an antigen to develop anti-PLA2 IgG antibodies in rabbits and used in vivo assays to examine the changes in crude venom when pre-incubated with these antibodies. Using Ouchterlony and western blot analyses on B. alternatus venom, we examined the specificity and sensitivity of phospholipase A2 recognition by the specific antibodies (anti-PLA2 IgG). Neutralisation assays using a non-toxic PLA2 antigen revealed unexpected results. The (indirect) haemolytic activity of whole venom was completely inhibited, and all catalytically active phospholipases A2 were blocked. Myotoxicity and lethality were reduced when the crude venom was pre-incubated with anti-PLA2 immunoglobulins. CK levels in the skeletal muscle were significantly reduced at 6 h, and the muscular damage was more significant at this time-point compared to 3 and 12 h. When four times the LD50 was used (224 μg), half the animals treated with the venom-anti PLA2 IgG mixture survived after 48 h. All assays performed with the specific antibodies revealed that Ba SpII RP4 PLA2 had a synergistic effect on whole-venom toxicity. IgG antibodies against the venom of the Argentinean species B. alternatus represent a valuable tool for elucidation of the roles of acidic PLA2 that appear to have purely digestive roles and for further studies on immunotherapy and snake envenoming in affected areas in Argentina and Brazil.
Resumo:
Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.
Resumo:
Biofilm formation on reverse osmosis (RO) systems represents a drawback in the application of this technology by different industries, including oil refineries. In RO systems the feed water maybe a source of microbial contamination and thus contributes for the formation of biofilm and consequent biofouling. In this study the planktonic culturable bacterial community was characterized from a feed water of a RO system and their capacities were evaluated to form biofilm in vitro. Bacterial motility and biofilm control were also analysed using phages. As results, diverse Protobacteria, Actinobacteria and Bacteroidetes were identified. Alphaproteobacteria was the predominant group and Brevundimonas, Pseudomonas and Mycobacterium the most abundant genera. Among the 30 isolates, 11 showed at least one type of motility and 11 were classified as good biofilm formers. Additionally, the influence of non-specific bacteriophage in the bacterial biofilms formed in vitro was investigated by action of phages enzymes or phage infection. The vB_AspP-UFV1 (Podoviridae) interfered in biofilm formation of most tested bacteria and may represent a good alternative in biofilm control. These findings provide important information about the bacterial community from the feed water of a RO system that may be used for the development of strategies for biofilm prevention and control in such systems.
Presynaptic Neuromuscular Action Of A Methanolic Extract From The Venom Of Rhinella Schneideri Toad.
Resumo:
Rhinella schneideri, previously known as Bufo paracnemis, is a common toad in many regions of Brazil. Its venom exerts important cardiovascular effects on humans and other animals. Although this toad venom has been the subject of intense investigations, little is known about its neuromuscular activity. The neurotoxicity of a methanolic extract of R. schneideri venom was tested on mouse phrenic nerve-diaphragm (PND) preparations mounted for conventional twitch tension recording - in response to indirect stimulation - and for electrophysiological measurements. Venom extract (50 μg/mL) increased the muscle twitch tension in PND preparations but did not significantly alter the resting membrane potential values. Electrophysiological evaluations showed that the extract (50 μg/mL) significantly augmented the frequency of miniature end-plate potential (from 38 ± 3.5 to 88 ± 15 after 60 minutes; n = 5; p < 0.05) and quantal content (from 128 ± 13 to 272 ± 34 after five minutes; n = 5; p < 0.05). Pretreatment with ouabain (1 μg/mL) for five minutes prevented the increase in quantal content (117 ± 18 and 154 ± 33 after five and 60 minutes, respectively). These results indicate that the methanolic extract of R. schneideri venom acts primarily presynaptically to enhance neurotransmitter release in mouse phrenic-diaphragm preparations.
Resumo:
The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2As2 single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3d bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content is interestingly independent of the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations in combination with this particular symmetry of the Fe 3d bands are propitious ingredients for the emergence of superconductivity in this class of materials.
Resumo:
Essential oils (EO) obtained from twenty medicinal and aromatic plants were evaluated for their antimicrobial activity against the oral pathogens Candida albicans, Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus sanguis and Streptococcus mitis. The antimicrobial activity of the EO was evaluates by microdilution method determining Minimal Inhibitory Concentration. Chemical analysis of the oils compounds was performed by Gas chromatography-mass spectrometry (CG-MS). The most active EO were also investigated as to their actions on the biolfilm formation. The most of the essential oils (EO) presented moderate to strong antimicrobial activity against the oral pathogens (MIC--Minimal Inhibitory Concentrations values between 0.007 and 1.00 mg/mL). The essential oil from Coriandrum sativum inhibited all oral species with MIC values from 0.007 to 0.250 mg/mL, and MBC/MFC (Minimal Bactericidal/Fungicidal Concentrations) from 0.015 to 0.500 mg/mL. On the other hand the essential oil of C. articulatus inhibited 63.96% of S. sanguis biofilm formation. Through Scanning Eletronic Microscopy (SEM) images no changes were observed in cell morphology, despite a decrease in biofilm formation and changes on biofilm structure. Chemical analysis by Gas Chromatography-Mass Spectrometry (GC-MS) of the C. sativum essential oil revealed major compounds derivatives from alcohols and aldehydes, while Cyperus articulatus and Aloysia gratissima (EOs) presented mono and sesquiterpenes. In conclusion, the crude oil from C. articulatus exhibited the best results of antimicrobial activity e ability to control biofilm formation. The chemical analysis showed the presence of terpenes and monoterpenes such as a-pinene, a-bulnesene and copaene. The reduction of biofilms formation was confirmed from SEM images. The results of this research shows a great potential from the plants studied as new antimicrobial sources.
Resumo:
Health economic evaluations require estimates of expected survival from patients receiving different interventions, often over a lifetime. However, data on the patients of interest are typically only available for a much shorter follow-up time, from randomised trials or cohorts. Previous work showed how to use general population mortality to improve extrapolations of the short-term data, assuming a constant additive or multiplicative effect on the hazards for all-cause mortality for study patients relative to the general population. A more plausible assumption may be a constant effect on the hazard for the specific cause of death targeted by the treatments. To address this problem, we use independent parametric survival models for cause-specific mortality among the general population. Because causes of death are unobserved for the patients of interest, a polyhazard model is used to express their all-cause mortality as a sum of latent cause-specific hazards. Assuming proportional cause-specific hazards between the general and study populations then allows us to extrapolate mortality of the patients of interest to the long term. A Bayesian framework is used to jointly model all sources of data. By simulation, we show that ignoring cause-specific hazards leads to biased estimates of mean survival when the proportion of deaths due to the cause of interest changes through time. The methods are applied to an evaluation of implantable cardioverter defibrillators for the prevention of sudden cardiac death among patients with cardiac arrhythmia. After accounting for cause-specific mortality, substantial differences are seen in estimates of life years gained from implantable cardioverter defibrillators.
Resumo:
Skin-wound healing is a complex and dynamic biological process involving inflammation, proliferation, and remodeling. Recent studies have shown that statins are new therapeutical options because of their actions, such as anti-inflammatory and antioxidant activity, on vasodilation, endothelial dysfunction and neoangiogenesis, which are independent of their lipid-lowering action. Our aim was to investigate the effect of atorvastatin on tissue repair after acute injury in healthy animals. Rats were divided into four groups: placebo-treated (P), topical atorvastatin-treated (AT), oral atorvastatin-treated (AO), topical and oral atorvastatin-treated (ATO). Under anesthesia, rats were wounded with an 8-mm punch in the dorsal region. Lesions were photographed on Days 0, 1, 3, 7, 10, 12, and 14 post-injury and samples taken on Days 1, 3, 7, and 14 for protein-expression analysis of insulin receptor substrate (IRS)-1, phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase (GSK)-3, endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), extracellular signal-regulated kinase (ERK), interleukin (IL)-10, IL-1β, IL-6, and tumor necrosis factor (TNF)-α. Upon macroscopic examination, we observed significant reductions of lesion areas in groups AT, AO, and ATO compared to the P group. Additionally, AT and AO groups showed increased expression of IRS-1, PI3K, Akt, GSK-3, and IL-10 on Days 1 and 3 when compared with the P group. All atorvastatin-treated groups showed higher expression of IRS-1, PI3K, Akt, GSK-3, IL-10, eNOS, VEGF, and ERK on Day 7. On Days 1, 3, and 7, all atorvastatin-treated groups showed lower expression of IL-6 and TNF-α when compared with the P group. We conclude that atorvastatin accelerated tissue repair of acute lesions in rats and modulated expressions of proteins and cytokines associated with cell-growth pathways.
Resumo:
The efficacy of the human papillomavirus type 16 (HPV-16)/HPV-18 AS04-adjuvanted vaccine against cervical infections with HPV in the Papilloma Trial against Cancer in Young Adults (PATRICIA) was evaluated using a combination of the broad-spectrum L1-based SPF10 PCR-DNA enzyme immunoassay (DEIA)/line probe assay (LiPA25) system with type-specific PCRs for HPV-16 and -18. Broad-spectrum PCR assays may underestimate the presence of HPV genotypes present at relatively low concentrations in multiple infections, due to competition between genotypes. Therefore, samples were retrospectively reanalyzed using a testing algorithm incorporating the SPF10 PCR-DEIA/LiPA25 plus a novel E6-based multiplex type-specific PCR and reverse hybridization assay (MPTS12 RHA), which permits detection of a panel of nine oncogenic HPV genotypes (types 16, 18, 31, 33, 35, 45, 52, 58, and 59). For the vaccine against HPV types 16 and 18, there was no major impact on estimates of vaccine efficacy (VE) for incident or 6-month or 12-month persistent infections when the MPTS12 RHA was included in the testing algorithm versus estimates with the protocol-specified algorithm. However, the alternative testing algorithm showed greater sensitivity than the protocol-specified algorithm for detection of some nonvaccine oncogenic HPV types. More cases were gained in the control group than in the vaccine group, leading to higher point estimates of VE for 6-month and 12-month persistent infections for the nonvaccine oncogenic types included in the MPTS12 RHA assay (types 31, 33, 35, 45, 52, 58, and 59). This post hoc analysis indicates that the per-protocol testing algorithm used in PATRICIA underestimated the VE against some nonvaccine oncogenic HPV types and that the choice of the HPV DNA testing methodology is important for the evaluation of VE in clinical trials. (This study has been registered at ClinicalTrials.gov under registration no. NCT00122681.).
Resumo:
Current data indicate that the size of high-density lipoprotein (HDL) may be considered an important marker for cardiovascular disease risk. We established reference values of mean HDL size and volume in an asymptomatic representative Brazilian population sample (n=590) and their associations with metabolic parameters by gender. Size and volume were determined in HDL isolated from plasma by polyethyleneglycol precipitation of apoB-containing lipoproteins and measured using the dynamic light scattering (DLS) technique. Although the gender and age distributions agreed with other studies, the mean HDL size reference value was slightly lower than in some other populations. Both HDL size and volume were influenced by gender and varied according to age. HDL size was associated with age and HDL-C (total population); non- white ethnicity and CETP inversely (females); HDL-C and PLTP mass (males). On the other hand, HDL volume was determined only by HDL-C (total population and in both genders) and by PLTP mass (males). The reference values for mean HDL size and volume using the DLS technique were established in an asymptomatic and representative Brazilian population sample, as well as their related metabolic factors. HDL-C was a major determinant of HDL size and volume, which were differently modulated in females and in males.
Resumo:
The aim of this study was to analyze the reasons for missed appointments in dental Family Health Units (FHU) and implement strategies to reduce same through action research. This is a study conducted in 12 FHUs in Piracicaba in the State of São Paulo from January, 1 to December, 31 2010. The sample was composed of 385 users of these health units who were interviewed over the phone and asked about the reasons for missing dental appointments, as well as 12 dentists and 12 nurses. Two workshops were staged with professionals: the first to assess the data collected in interviews and develop strategy, and the second for evaluation after 4 months. The primary cause for missed appointments was the opening hours of the units coinciding with the work schedule of the users. Among the strategies suggested were lectures on oral health, ongoing education in team meetings, training of Community Health Agents, participation in therapeutic groups and partnerships between Oral Health Teams and the social infrastructure of the community. The adoption of the single medical record was the strategy proposed by professionals. The strategies implemented led to a 66.6% reduction in missed appointments by the units and the motivating nature of the workshops elicited critical reflection to redirect health practices.