9 resultados para science learning
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.
Resumo:
To report on the use of chronic myeloid leukemia as a theme of basic clinical integration for first year medical students to motivate and enable in-depth understanding of the basic sciences of the future physician. During the past thirteen years we have reviewed and updated the curriculum of the medical school of the Universidade Estadual de Campinas. The main objective of the new curriculum is to teach the students how to learn to learn. Since then, a case of chronic myeloid leukemia has been introduced to first year medical students and discussed in horizontal integration with all themes taught during a molecular and cell biology course. Cell structure and components, protein, chromosomes, gene organization, proliferation, cell cycle, apoptosis, signaling and so on are all themes approached during this course. At the end of every topic approached, the students prepare in advance the corresponding topic of clinical cases chosen randomly during the class, which are then presented by them. During the final class, a paper regarding mutations in the abl gene that cause resistance to tyrosine kinase inhibitors is discussed. After each class, three tests are solved in an interactive evaluation. The course has been successful since its beginning, 13 years ago. Great motivation of those who participated in the course was observed. There were less than 20% absences in the classes. At least three (and as many as nine) students every year were interested in starting research training in the field of hematology. At the end of each class, an interactive evaluation was performed and more than 70% of the answers were correct in each evaluation. Moreover, for the final evaluation, the students summarized, in a written report, the molecular and therapeutic basis of chronic myeloid leukemia, with scores ranging from 0 to 10. Considering all 13 years, a median of 78% of the class scored above 5 (min 74%-max 85%), and a median of 67% scored above 7. Chronic myeloid leukemia is an excellent example of a disease that can be used for clinical basic integration as this disorder involves well known protein, cytogenetic and cell function abnormalities, has well-defined diagnostic strategies and a target oriented therapy.
Resumo:
The present review addresses certain important aspects regarding nanoparticles and the environment, with an emphasis on plant science. The production and characterization of nanoparticles is the focus of this review, providing an idea of the range and the consolidation of these aspects in the literature, with modifications on the routes of synthesis and the application of the analytical techniques for characterization of the nanoparticles (NPs). Additionally, aspects related to the interaction between the NPs and plants, their toxicities, and the phytoremediation process, among others, are also discussed. Future trends are also presented, supplying evidence for certain possibilities regarding new research involving nanoparticles and plants.
Resumo:
PURPOSE: To determine the mean critical fusion frequency and the short-term fluctuation, to analyze the influence of age, gender, and the learning effect in healthy subjects undergoing flicker perimetry. METHODS: Study 1 - 95 healthy subjects underwent flicker perimetry once in one eye. Mean critical fusion frequency values were compared between genders, and the influence of age was evaluated using linear regression analysis. Study 2 - 20 healthy subjects underwent flicker perimetry 5 times in one eye. The first 3 sessions were separated by an interval of 1 to 30 days, whereas the last 3 sessions were performed within the same day. The first 3 sessions were used to investigate the presence of a learning effect, whereas the last 3 tests were used to calculate short-term fluctuation. RESULTS: Study 1 - Linear regression analysis demonstrated that mean global, foveal, central, and critical fusion frequency per quadrant significantly decreased with age (p<0.05).There were no statistically significant differences in mean critical fusion frequency values between males and females (p>0.05), with the exception of the central area and inferonasal quadrant (p=0.049 and p=0.011, respectively), where the values were lower in females. Study 2 - Mean global (p=0.014), central (p=0.008), and peripheral (p=0.03) critical fusion frequency were significantly lower in the first session compared to the second and third sessions. The mean global short-term fluctuation was 5.06±1.13 Hz, the mean interindividual and intraindividual variabilities were 11.2±2.8% and 6.4±1.5%, respectively. CONCLUSION: This study suggests that, in healthy subjects, critical fusion frequency decreases with age, that flicker perimetry is associated with a learning effect, and that a moderately high short-term fluctuation is expected.
Resumo:
PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física