25 resultados para quantum correlated diffraction imaging
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Split-plot design (SPD) and near-infrared chemical imaging were used to study the homogeneity of the drug paracetamol loaded in films and prepared from mixtures of the biocompatible polymers hydroxypropyl methylcellulose, polyvinylpyrrolidone, and polyethyleneglycol. The study was split into two parts: a partial least-squares (PLS) model was developed for a pixel-to-pixel quantification of the drug loaded into films. Afterwards, a SPD was developed to study the influence of the polymeric composition of films and the two process conditions related to their preparation (percentage of the drug in the formulations and curing temperature) on the homogeneity of the drug dispersed in the polymeric matrix. Chemical images of each formulation of the SPD were obtained by pixel-to-pixel predictions of the drug using the PLS model of the first part, and macropixel analyses were performed for each image to obtain the y-responses (homogeneity parameter). The design was modeled using PLS regression, allowing only the most relevant factors to remain in the final model. The interpretation of the SPD was enhanced by utilizing the orthogonal PLS algorithm, where the y-orthogonal variations in the design were separated from the y-correlated variation.
Resumo:
This chapter provides a short review of quantum dots (QDs) physics, applications, and perspectives. The main advantage of QDs over bulk semiconductors is the fact that the size became a control parameter to tailor the optical properties of new materials. Size changes the confinement energy which alters the optical properties of the material, such as absorption, refractive index, and emission bands. Therefore, by using QDs one can make several kinds of optical devices. One of these devices transforms electrons into photons to apply them as active optical components in illumination and displays. Other devices enable the transformation of photons into electrons to produce QDs solar cells or photodetectors. At the biomedical interface, the application of QDs, which is the most important aspect in this book, is based on fluorescence, which essentially transforms photons into photons of different wavelengths. This chapter introduces important parameters for QDs' biophotonic applications such as photostability, excitation and emission profiles, and quantum efficiency. We also present the perspectives for the use of QDs in fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET), so useful in modern microscopy, and how to take advantage of the usually unwanted blinking effect to perform super-resolution microscopy.
Resumo:
One of the most important properties of quantum dots (QDs) is their size. Their size will determine optical properties and in a colloidal medium their range of interaction. The most common techniques used to measure QD size are transmission electron microscopy (TEM) and X-ray diffraction. However, these techniques demand the sample to be dried and under a vacuum. This way any hydrodynamic information is excluded and the preparation process may alter even the size of the QDs. Fluorescence correlation spectroscopy (FCS) is an optical technique with single molecule sensitivity capable of extracting the hydrodynamic radius (HR) of the QDs. The main drawback of FCS is the blinking phenomenon that alters the correlation function implicating in a QD apparent size smaller than it really is. In this work, we developed a method to exclude blinking of the FCS and measured the HR of colloidal QDs. We compared our results with TEM images, and the HR obtained by FCS is higher than the radius measured by TEM. We attribute this difference to the cap layer of the QD that cannot be seen in the TEM images.
Resumo:
The aim of this study is to test the feasibility and reproducibility of diffusion-weighted magnetic resonance imaging (DW-MRI) evaluations of the fetal brains in cases of twin-twin transfusion syndrome (TTTS). From May 2011 to June 2012, 24 patients with severe TTTS underwent MRI scans for evaluation of the fetal brains. Datasets were analyzed offline on axial DW images and apparent diffusion coefficient (ADC) maps by two radiologists. The subjective evaluation was described as the absence or presence of water diffusion restriction. The objective evaluation was performed by the placement of 20-mm(2) circular regions of interest on the DW image and ADC maps. Subjective interobserver agreement was assessed by the kappa correlation coefficient. Objective intraobserver and interobserver agreements were assessed by proportionate Bland-Altman tests. Seventy-four DW-MRI scans were performed. Sixty of them (81.1%) were considered to be of good quality. Agreement between the radiologists was 100% for the absence or presence of diffusion restriction of water. For both intraobserver and interobserver agreement of ADC measurements, proportionate Bland-Altman tests showed average percentage differences of less than 1.5% and 95% CI of less than 18% for all sites evaluated. Our data demonstrate that DW-MRI evaluation of the fetal brain in TTTS is feasible and reproducible.
Resumo:
Fluorescence Correlation Spectroscopy (FCS) is an optical technique that allows the measurement of the diffusion coefficient of molecules in a diluted sample. From the diffusion coefficient it is possible to calculate the hydrodynamic radius of the molecules. For colloidal quantum dots (QDs) the hydrodynamic radius is valuable information to study interactions with other molecules or other QDs. In this chapter we describe the main aspects of the technique and how to use it to calculate the hydrodynamic radius of quantum dots (QDs).
Resumo:
Our objective was to investigate spinal cord (SC) atrophy in amyotrophic lateral sclerosis (ALS) patients, and to determine whether it correlates with clinical parameters. Forty-three patients with ALS (25 males) and 43 age- and gender-matched healthy controls underwent MRI on a 3T scanner. We used T1-weighted 3D images covering the whole brain and the cervical SC to estimate cervical SC area and eccentricity at C2/C3 level using validated software (SpineSeg). Disease severity was quantified with the ALSFRS-R and ALS Severity scores. SC areas of patients and controls were compared with a Mann-Whitney test. We used linear regression to investigate association between SC area and clinical parameters. Results showed that mean age of patients and disease duration were 53.1 ± 12.2 years and 34.0 ± 29.8 months, respectively. The two groups were significantly different regarding SC areas (67.8 ± 6.8 mm² vs. 59.5 ± 8.4 mm², p < 0.001). Eccentricity values were similar in both groups (p = 0.394). SC areas correlated with disease duration (r = - 0.585, p < 0.001), ALSFRS-R score (r = 0.309, p = 0.044) and ALS Severity scale (r = 0.347, p = 0.022). In conclusion, patients with ALS have SC atrophy, but no flattening. In addition, SC areas correlated with disease duration and functional status. These data suggest that quantitative MRI of the SC may be a useful biomarker in the disease.
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Resumo:
The search for an Alzheimer's disease (AD) biomarker is one of the most relevant contemporary research topics due to the high prevalence and social costs of the disease. Functional connectivity (FC) of the default mode network (DMN) is a plausible candidate for such a biomarker. We evaluated 22 patients with mild AD and 26 age- and gender-matched healthy controls. All subjects underwent resting functional magnetic resonance imaging (fMRI) in a 3.0 T scanner. To identify the DMN, seed-based FC of the posterior cingulate was calculated. We also measured the sensitivity/specificity of the method, and verified a correlation with cognitive performance. We found a significant difference between patients with mild AD and controls in average z-scores: DMN, whole cortical positive (WCP) and absolute values. DMN individual values showed a sensitivity of 77.3% and specificity of 70%. DMN and WCP values were correlated to global cognition and episodic memory performance. We showed that individual measures of DMN connectivity could be considered a promising method to differentiate AD, even at an early phase, from normal aging. Further studies with larger numbers of participants, as well as validation of normal values, are needed for more definitive conclusions.
Resumo:
The SLC8A1 gene, which encodes the Na(+)/Ca(2+) exchanger, plays a key role in calcium homeostasis. Our previous gene expression oligoarray data revealed SLC8A1 underexpression in penile carcinoma (PeCa). The aim of this study was to investigate whether the dysregulation of SLC8A1 expression is associated with apoptosis and cell proliferation in PeCa, via modulation of calcium concentration. The underlying mechanisms of SLC8A1 underexpression were also explored, focusing on copy number alteration and microRNA. Transcript levels of SLC8A1 gene and miR-223 were evaluated by quantitative PCR, comparing PeCa samples with normal glans tissues. SLC8A1 copy number was evaluated by microarray-based comparative genomic hybridization (array-CGH). Caspase-3 and Ki-67 immunostaining, as well as calcium distribution by Laser Ablation Imaging Inductively Coupled Plasma Mass Spectrometry [LA(i)-ICP-MS], were investigated in both normal and tumor samples. Confirming our previous data, SLC8A1 underexpression was detected in PeCa samples (P=0.001) and was not associated with gene copy number loss. In contrast, overexpression of miR-223 (P=0.002) was inversely correlated with SLC8A1 (P=0.015, r=-0.426), its putative repressor. In addition, SLC8A1 underexpression was associated with decreased calcium distribution, high Ki-67 and low caspase-3 immunoexpression in PeCa when compared with normal tissues. Down-regulation of the SLC8A1 gene, most likely mediated by its regulator miR-223, can lead to reduced calcium levels in PeCa and, consequently, to suppression of apoptosis and increased tumor cell proliferation. These data suggest that the miR-223-NCX1-calcium-signaling axis may represent a potential therapeutic approach in PeCa.
Resumo:
The present essay is illustrated with magnetic resonance images obtained at the authors' institution over the past 15 years and discusses the main imaging findings of intraventricular tumor-like lesions (ependymoma, pilocytic astrocytoma, central neurocytoma, ganglioglioma, choroid plexus papilloma, primitive neuroectodermal tumors, meningioma, epidermoid tumor). Such lesions represent a subgroup of intracranial lesions with unique characteristics and some image patterns that may facilitate the differential diagnosis.
Resumo:
The present essay is illustrated with magnetic resonance images obtained at the authors' institution over the past 15 years and discusses the main imaging findings of intraventricular tumor-like lesions (colloid cyst, oligodendroglioma, astroblastoma, lipoma, cavernoma) and of inflammatory/infectious lesions (neurocysticercosis and an atypical presentation of neurohistoplasmosis). Such lesions represent a subgroup of intracranial lesions with unique characteristics and some imaging patterns that may facilitate the differential diagnosis.
Resumo:
Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined 'quantum boxes'. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on-but is not limited to-the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.
Resumo:
Chronic pain has been often associated with myofascial pain syndrome (MPS), which is determined by myofascial trigger points (MTrP). New features have been tested for MTrP diagnosis. The aim of this study was to evaluate two-dimensional ultrasonography (2D US) and ultrasound elastography (UE) images and elastograms of upper trapezius MTrP during electroacupuncture (EA) and acupuncture (AC) treatment. 24 women participated, aged between 20 and 40 years (M ± SD = 27.33 ± 5.05) with a body mass index ranging from 18.03 to 27.59 kg/m2 (22.59 ± 3.11), a regular menstrual cycle, at least one active MTrP at both right (RTPz) and left trapezius (LTPz) and local or referred pain for up to six months. Subjects were randomized into EA and AC treatment groups and the control sham AC (SHAM) group. Intensity of pain was assessed by visual analogue scale; MTrP mean area and strain ratio (SR) by 2D US and UE. A significant decrease of intensity in general, RTPz, and LTPz pain was observed in the EA group (p = 0.027; p < 0.001; p = 0.005, respectively) and in general pain in the AC group (p < 0.001). Decreased MTrP area in RTPz and LTPz were observed in AC (p < 0.001) and EA groups (RTPz, p = 0.003; LTPz, p = 0.005). Post-treatment SR in RTPz and LTPz was lower than pre-treatment in both treatment groups. 2D US and UE effectively characterized MTrP and surrounding tissue, pointing to the possibility of objective confirmation of subjective EA and AC treatment effects.
Resumo:
The aim of this study was to develop a methodology using Raman hyperspectral imaging and chemometric methods for identification of pre- and post-blast explosive residues on banknote surfaces. The explosives studied were of military, commercial and propellant uses. After the acquisition of the hyperspectral imaging, independent component analysis (ICA) was applied to extract the pure spectra and the distribution of the corresponding image constituents. The performance of the methodology was evaluated by the explained variance and the lack of fit of the models, by comparing the ICA recovered spectra with the reference spectra using correlation coefficients and by the presence of rotational ambiguity in the ICA solutions. The methodology was applied to forensic samples to solve an automated teller machine explosion case. Independent component analysis proved to be a suitable method of resolving curves, achieving equivalent performance with the multivariate curve resolution with alternating least squares (MCR-ALS) method. At low concentrations, MCR-ALS presents some limitations, as it did not provide the correct solution. The detection limit of the methodology presented in this study was 50μgcm(-2).
Resumo:
The development of inhibitory antibodies against factor VIII (FVIII) (inhibitor) is the major complication in haemophilia A patients. The FVIII-binding antibodies development comprises a polyclonal immunoglobulin (Ig) G response. Recent studies showed strong correlation between the presence of neutralizing anti-FVIII antibodies (inhibitors) and IgG4 subclass. The aim of this study was to evaluate anti-FVIII IgG subclasses in haemophilia A patients with inhibitor both in a cross-sectional and in a longitudinal analysis. Inhibitors were determined by Nijmegen-Bethesda assay. Anti-FVIII IgG subclasses were performed by ELISA, and samples from 20 healthy individuals were used to validate the test. We studied 25 haemophilia A patients with inhibitor, previously treated exclusively with plasma-derived FVIII concentrates or bypassing agents. The IgG subclasses distributions were evaluated in two groups of patients classified according to inhibitor response. IgG1 and IgG4 antibodies were most prominent in haemophilia A patients with inhibitors when compared with IgG2 and IgG3. This study reports for the first time the behaviour of FVIII-binding IgG1 and IgG4 subclasses in a longitudinal analysis, in a clinical setting, of high-response inhibitor haemophilia A patients, showing the correlation of IgG4 and the inhibitor titres. In spite of being considered a non-pathologic antibody subclass with anti-inflammatory properties in other situations, IgG4 is correlated with the presence of high-titre inhibitor in the haemophilia setting. The comprehension of the IgG4 role in immune response may be crucial to establish the process for designing specific tolerance to FVIII.