5 resultados para pressure compensated flow control
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The spouted and fluidized bed technologies are usually employed in operations of drying, coating and granulation of particles by the chemical and pharmaceutical industries. The use of these techniques in agronomy is limited to the treatment of some species of seeds. In this work, the objective was to analyse the fluid-dynamics of fluidized and spouted beds when broccoli (Brassica oleracea L. var. Italica) seeds are used and also to verify the influence on seed germination after 60 min of seed exposition to spouting or fluidization, at room temperature. The fluid-dynamics was defined by the measurements of the bed pressure drop as a function of the air flow rate for different seeds loads. The experimental conditions were based on the physical properties of the seeds and were limited by the apparatus dimensions. The cone-cylindrical bed was constructed in plexyglass to permit flow visualization. The values of the parameters: maximum pressure drop, minimum spouting flow rate and pressure drop, and stable spout pressure drop were experimentally obtained from the fluid-dynamic analysis and were compared with the values calculated by empirical equations found in the literature. The same procedure was carried out with the fluidized bed and the important parameters for this regime were the air velocity and the bed pressure drop at minimum fluidization. The analysis of seed germination indicated that no damage was caused to the seeds by the spout or fluidization processes.
Resumo:
Up to 20% of women with hypertensive pregnancy disorders might persist with chronic hypertension. This study compared clinical and echocardiographic features between women whose hypertension began as hypertensive pregnancy disorders (PH group) and women whose diagnosis of hypertension did not occur during pregnancy (NPH group). Fifty PH and 100 NPH women were cross-sectionally evaluated by clinical, laboratory, and echocardiography analysis, and the groups were matched by duration of hypertension. PH exhibited lower age (46.6 ± 1.4 vs. 65.3 ± 1.1 years; P < .001), but higher systolic (159.8 ± 3.9 vs. 148.0 ± 2.5 mm Hg; P = .009) and diastolic (97.1 ± 2.4 vs. 80.9 ± 1.3 mm Hg; P < .001) blood pressure than NPH, although used more antihypertensive classes (3.4 ± 0.2 vs. 2.6 ± 0.1; P < .001). Furthermore, PH showed higher left ventricular wall thickness and increased prevalence of concentric hypertrophy than NPH after adjusting for age and blood pressure. In conclusion, this study showed that PH may exhibit worse blood pressure control and adverse left ventricular remodeling compared with NPH.
Resumo:
We reported here for the first time that triboelectric charges on PET sheets can be used to seal and control the flow rate in paper-based devices. The proposed method exhibits simplicity and low cost, provides reversible sealing and minimizes the effect of sample evaporation.
Resumo:
The aim of this present study was to investigate on the effects of concurrent training with blood flow restriction (BFR-CT) and concurrent training (CT) on the aerobic fitness, muscle mass and muscle strength in a cohort of older individuals. 25 healthy older adults (64.7±4.1 years; 69.33±10.8 kg; 1.6±0.1 m) were randomly assigned to experimental groups: CT (n=8, endurance training (ET), 2 days/week for 30-40 min, 50-80% VO2peak and RT, 2 days/week, leg press with 4 sets of 10 reps at 70-80% of 1-RM with 60 s rest), BFR-CT (n=10, ET, similar to CT, but resistance training with blood flow restriction: 2 days/week, leg press with 1 set of 30 and 3 sets of 15 reps at 20-30% 1-RM with 60 s rest) or control group (n=7). Quadriceps cross-sectional area (CSAq), 1-RM and VO2peak were assessed pre- and post-examination (12 wk). The CT and BFR-CT showed similar increases in CSAq post-test (7.3%, P<0.001; 7.6%, P<0.0001, respectively), 1-RM (38.1%, P<0.001; 35.4%, P=0.001, respectively) and VO2peak (9.5%, P=0.04; 10.3%, P=0.02, respectively). The BFR-CT promotes similar neuromuscular and cardiorespiratory adaptations as CT.
Resumo:
Trees from tropical montane cloud forest (TMCF) display very dynamic patterns of water use. They are capable of downwards water transport towards the soil during leaf-wetting events, likely a consequence of foliar water uptake (FWU), as well as high rates of night-time transpiration (Enight) during drier nights. These two processes might represent important sources of water losses and gains to the plant, but little is known about the environmental factors controlling these water fluxes. We evaluated how contrasting atmospheric and soil water conditions control diurnal, nocturnal and seasonal dynamics of sap flow in Drimys brasiliensis (Miers), a common Neotropical cloud forest species. We monitored the seasonal variation of soil water content, micrometeorological conditions and sap flow of D. brasiliensis trees in the field during wet and dry seasons. We also conducted a greenhouse experiment exposing D. brasiliensis saplings under contrasting soil water conditions to deuterium-labelled fog water. We found that during the night D. brasiliensis possesses heightened stomatal sensitivity to soil drought and vapour pressure deficit, which reduces night-time water loss. Leaf-wetting events had a strong suppressive effect on tree transpiration (E). Foliar water uptake increased in magnitude with drier soil and during longer leaf-wetting events. The difference between diurnal and nocturnal stomatal behaviour in D. brasiliensis could be attributed to an optimization of carbon gain when leaves are dry, as well as minimization of nocturnal water loss. The leaf-wetting events on the other hand seem important to D. brasiliensis water balance, especially during soil droughts, both by suppressing tree transpiration (E) and as a small additional water supply through FWU. Our results suggest that decreases in leaf-wetting events in TMCF might increase D. brasiliensis water loss and decrease its water gains, which could compromise its ecophysiological performance and survival during dry periods.